Multifunctional Role of Polyvinylpyrrolidone in Pharmaceutical Formulations

07 Sep.,2023

 

  1. Kariduraganavar MY, Kittur AA, Kamble RR. Chapter 1 - polymer synthesis and processing. In: Kumbar SG, Laurencin CT, Deng M, editors. Natural and synthetic biomedical polymers. Oxford: Elsevier; 2014. p. 1–31. https://doi.org/10.1016/B978-0-12-396983-5.00001-6.

  2. Rowe RC. Paul S, and Marian Q. Handbook of pharmaceutical excipients: Pharmaceutical Press; 2009.

  3. Robinson BV, Sullivan FM, Borzelleca JF, Schwartz SL. A critical review of the kinetics and toxicology of polyvinylpyrrolidone (Povidone). Michigan: Lewis Publishers; 1990.

  4. Chinatangkul N, Tubtimsri S, Panchapornpon D, Akkaramongkolporn P, Limmatvapirat C, Limmatvapirat S. Design and characterisation of electrospun shellac-polyvinylpyrrolidone blended micro/nanofibres loaded with monolaurin for application in wound healing. Int J Pharm. 2019;562:258–70. https://doi.org/10.1016/j.ijpharm.2019.03.048.

  5. Godakanda VU, Li H, Alquezar L, Zhao L, Zhu LM, de Silva R, et al. Tunable drug release from blend poly (vinyl pyrrolidone)-ethyl cellulose nanofibers. Int J Pharm. 2019;562:172–9. https://doi.org/10.1016/j.ijpharm.2019.03.035.

  6. Anderson C, Rodriguez F, Thurston D. Crosslinking aqueous poly (vinyl pyrrolidone) solutions by persulfate. J Appl Polym Sci. 1979;23:2453–62. https://doi.org/10.1002/app.1979.070230823.

  7. Haaf F, Sanner A, Strau F. Polymers of N-vinylpyrrolidone: synthesis, characterization and uses. Polym J. 1985;17:143–52. https://doi.org/10.1295/polymj.17.143.

  8. Yang M, Xie S, Li Q, Wang Y, Chang X, Shan L, et al. Effects of polyvinylpyrrolidone both as a binder and pore-former on the release of sparingly water-soluble topiramate from ethylcellulose coated pellets. Int J Pharm. 2014;465:187–96. https://doi.org/10.1016/j.ijpharm.2014.02.021.

  9. Buttini F, Colombo P, Wenger M, Mesquida P, Marriott C, Jones SA. Back to basics: the development of a simple, homogenous, two-component dry-powder inhaler formulation for the delivery of budesonide using miscible vinyl polymers. J Pharm Sci. 2008;97:1257–67. https://doi.org/10.1002/jps.21126.

  10. Lin SP, Hou YC, Liao TY, Tsai SY. Enhancing the bioavailability of magnolol in rabbits using melting solid dispersion with polyvinylpyrrolidone. Drug Dev Ind Pharm. 2014;40:330–7. https://doi.org/10.3109/03639045.2012.760580.

  11. Ali R, Mehta P, Monou PK, Arshard MS, Ahmad Z. Electrospinning/electrospraying coatings for metal microneedles: a design of experiments (DOE) and Quality by Design (QbD) approach. Eur J Pharm Biopharm. 2020;156:20–39. https://doi.org/10.1016/j.ejpb.2020.08.023.

  12. Wei J, Talbot JB. Viscosity correlation for aqueous polyvinylpyrrolidone (PVP) solutions. J Appl Polym Sci. 2003;90:1153–5. https://doi.org/10.1002/app.12799.

  13. Morkhade DM. Comparative impact of different binder addition methods, binders and diluents on resulting granule and tablet attributes via high shear wet granulation. Powder Technol. 2017;320:114–24. https://doi.org/10.1016/j.powtec.2017.07.038.

  14. Zhao Y, Xie X, Zhao Y, Gao Y, Cai C, Zhang Q, et al. Effect of plasticizers on manufacturing ritonavir/copovidone solid dispersions via hot-melt extrusion: Preformulation, physicochemical characterization, and pharmacokinetics in rats. Eur J Pharm Sci. 2019;127:60–70. https://doi.org/10.1016/j.ejps.2018.10.020.

  15. Pezzoli R, Lyons JG, Gately N, Higginbotham CL. Investigation of miscibility estimation methods between indomethacin and poly (vinylpyrrolidone-co-vinyl acetate). Int J Pharm. 2018;549:50–7. https://doi.org/10.1016/j.ijpharm.2018.07.039.

  16. Kean R, McKloud E, Townsend EM, Sherry L, Delaney C, Jones BL, et al. The comparative efficacy of antiseptics against Candida auris biofilms. Int J Antimicrob Agents. 2018;52:673–7. https://doi.org/10.1016/j.ijantimicag.2018.05.007.

  17. Châtellier X, Bottero JY, Petit JL. Adsorption of a cationic polyelectrolyte on Escherichia coli Bacteria: 1. Adsorption of the Polymer Langmuir. 2001;17:2782–90. https://doi.org/10.1021/la0007628.

  18. Jain SP, Mehta DC, Shah SP, Singh PP, Amin PD. Melt-in-mouth pellets of fexofenadine hydrochloride using crospovidone as an extrusion-spheronisation aid. AAPS PharmSciTech. 2010;11:917–23.

  19. Teodorescu M, Bercea M. Poly(vinylpyrrolidone) – a versatile polymer for biomedical and beyond medical applications. Polym-Plast Technol Eng. 2015;54:923–43. https://doi.org/10.1080/03602559.2014.979506.

  20. Luo YP, Zhao YB, Liu S. Evaluation of DFO/PVP and its application to latent fingermarks development on thermal paper. Forensic Sci Int. 2013;229:75–9. https://doi.org/10.1080/03602559.2014.979506.

  21. Mestre S, Chiva C, Palacios MD, Amorós JL. Development of a yellow ceramic pigment based on silver nanoparticles. J Eur Ceram Soc. 2012;32:2825–30. https://doi.org/10.1016/j.jeurceramsoc.2011.12.006.

  22. Ramanujam K, Sundrarajan M. Grafting of cellulosic fabric using pvp with mgo nanoparticles for improve performance of bacterial and fungal. World J Pharm Pharm Sci. 2014;3:1989–2004.

  23. Ahmed MA, Khafagy RM, Bishay ST, Saleh NM. Effective dye removal and water purification using the electric and magnetic Zn0.5Co0.5Al0.5Fe1.46La0.04O4/polymer core–shell nanocomposites. J Alloys Compd. 2013;578:121–31. https://doi.org/10.1016/j.jallcom.2013.04.182.

  24. Julinova M, Vanharova L, Jurca M. Water-soluble polymeric xenobiotics - polyvinyl alcohol and polyvinylpyrrolidon - and potential solutions to environmental issues: a brief review. J Environ Manag. 2018;228:213–22. https://doi.org/10.1016/j.jenvman.2018.09.010.

  25. Franco P, De Marco I. The use of poly(N-vinyl pyrrolidone) in the delivery of drugs: a review. Polymers (Basel). 2020;12:1114. https://doi.org/10.3390/polym12051114.

  26. Qiu Y, Chen Y, Zhang GG, Yu L, Mantri RV. Developing solid oral dosage forms: pharmaceutical theory and practice. Lodon: Academic press; 2016.

  27. Tran TH, Poudel BK, Marasini N, Woo JS, Choi HG, Yong CS, et al. Development of raloxifene-solid dispersion with improved oral bioavailability via spray-drying technique. Arch Pharm Res. 2013;36:86–93. https://doi.org/10.1007/s12272-013-0012-y.

  28. Martinez-Marcos L, Lamprou DA, McBurney RT, Halbert GW. A novel hot-melt extrusion formulation of albendazole for increasing dissolution properties. Int J Pharm. 2016;499:175–85. https://doi.org/10.1016/j.ijpharm.2016.01.006.

  29. de Souza CMP, dos Santos JAB, do Nascimento AL, Chaves Júnior JV, de Lima Ramos Júnior FJ, de Lima Neto SA, et al. Thermal analysis study of solid dispersions hydrochlorothiazide. J Therm Anal Calorim. 2017;131(1):681–9.

  30. Alves LD, de La Roca Soares MF, de Albuquerque CT, da Silva ER, Vieira AC, Fontes DA, et al. Solid dispersion of efavirenz in PVP K-30 by conventional solvent and kneading methods. Carbohydr Polym. 2014;104:166–74. https://doi.org/10.1016/j.carbpol.2014.01.027.

  31. Knapik J, Wojnarowska Z, Grzybowska K, Tajber L, Mesallati H, Paluch KJ, et al. Molecular Dynamics and Physical Stability of Amorphous Nimesulide Drug and Its Binary Drug–Polymer Systems. Mol Pharm. 2016;13:1937–46. https://doi.org/10.1021/acs.molpharmaceut.6b00115.

  32. Paisana MC, Wahl MA, Pinto JF. Effect of polymers in moisture sorption and physical stability of polymorphic olanzapine. Eur J Pharm Sci. 2017;97:257–68. https://doi.org/10.1016/j.ejps.2016.11.023.

  33. Chavan RB, Thipparaboina R, Kumar D, Shastri NR. Evaluation of the inhibitory potential of HPMC, PVP and HPC polymers on nucleation and crystal growth. RSC Adv. 2016;6:77569–76. https://doi.org/10.1039/c6ra19746a.

  34. Sakurai A, Sakai T, Sako K, Maitani YJC. Polymer combination increased both physical stability and oral absorption of solid dispersions containing a low glass transition temperature drug: physicochemical characterization and in vivo study. Chem. Pharm. Bull. 2012;60:459–64. Chem Pharm Bull. 2012;60:459–64. https://doi.org/10.1248/cpb.60.459.

  35. Patel DD, Anderson BD. Adsorption of polyvinylpyrrolidone and its impact on maintenance of aqueous supersaturation of indomethacin via crystal growth inhibition. J Pharm Sci. 2015;104:2923–33. https://doi.org/10.1002/jps.24493.

  36. Thenmozhi K, Yoo YJ. Enhanced solubility of piperine using hydrophilic carrier-based potent solid dispersion systems. Drug Dev Ind Pharm. 2017;43:1501–9. https://doi.org/10.1080/03639045.2017.1321658.

  37. Zhai X, Li C, Lenon GB, Xue CCL, Li W. Preparation and characterisation of solid dispersions of tanshinone IIA, cryptotanshinone and total tanshinones. Asian J Pharm Sci. 2017;12:85–97. https://doi.org/10.1016/j.ajps.2016.08.004.

  38. Chen ZQ, Liu Y, Zhao JH, Wang L, Feng NP. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system. Int J Nanomedicine. 2012;7:1115–25. https://doi.org/10.2147/IJN.S28761.

  39. Apiwongngam J, Limwikrant W, Jintapattanakit A, Jaturanpinyo M. Enhanced supersaturation of chlortetracycline hydrochloride by amorphous solid dispersion. J Drug Deliv Sci Technol. 2018;47:417–26. https://doi.org/10.1016/j.jddst.2018.08.007.

  40. Tang J, Bao J, Shi X, Sheng X, Su W. Preparation, optimisation, and in vitro-in vivo evaluation of febuxostat ternary solid dispersion. J Microencapsul. 2018;35:454–66. https://doi.org/10.1080/02652048.2018.1526339.

  41. Chhouk K, Wahyudiono, Kanda H, Kawasaki SI, Goto M. Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl mixer. Front Chem Sci Eng. 2017;12:184–93. https://doi.org/10.1007/s11705-017-1678-3.

  42. Yousaf AM, Kim DW, Kim DS, Kim JO, Youn YS, Cho KH, et al. Influence of polyvinylpyrrolidone quantity on the solubility, crystallinity and oral bioavailability of fenofibrate in solvent-evaporated microspheres. J Microencapsul. 2016;33:365–71. https://doi.org/10.1080/02652048.2016.1194906.

  43. Shuai S, Yue S, Huang Q, Wang W, Yang J, Lan K, et al. Preparation, characterization and in vitro/vivo evaluation of tectorigenin solid dispersion with improved dissolution and bioavailability. Eur J Drug Metab Pharmacokinet. 2016;41:413–22. https://doi.org/10.1007/s13318-015-0265-6.

  44. Puncochova K, Prajzlerova M, Beranek J, Stepanek F. The impact of polymeric excipients on the particle size of poorly soluble drugs after pH-induced precipitation. Eur J Pharm Sci. 2016;95:138–44. https://doi.org/10.1016/j.ejps.2016.08.028.

  45. Li B, Konecke S, Harich K, Wegiel L, Taylor LS, Edgar KJ. Solid dispersion of quercetin in cellulose derivative matrices influences both solubility and stability. Carbohydr Polym. 2013;92:2033–40. https://doi.org/10.1016/j.carbpol.2012.11.073.

  46. Tsai TH, Chou CJ, Lee TF, Wang LCH, Chen CF. Pharmacokinetic and pharmacodynamic studies of magnolol after oral administration in rats. Pharm Pharmacol Commun. 2011;2:191–3. https://doi.org/10.1111/j.2042-7158.1996.tb00592.x.

  47. Lin SP, Tsai SY, Lee Chao PD, Chen YC, Hou YC. Pharmacokinetics, bioavailability, and tissue distribution of magnolol following single and repeated dosing of magnolol to rats. Planta Med. 2011;77:1800–5. https://doi.org/10.1055/s-0030-1271159.

  48. Delmas PD. Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med. 1997;337:1641–7. https://doi.org/10.1056/NEJM199712043372301.

  49. Teeter JS, Meyerhoff RD. Environmental fate and chemistry of raloxifene hydrochloride. Environ Toxicol Chem. 2010;21:729–36. https://doi.org/10.1002/etc.5620210407.

  50. Fan W, Zhu W, Zhang X, Di L. The preparation of curcumin sustained-release solid dispersion by hot melt extrusion - optimization of the formulation. J Pharm Sci. 2020;109:1242–52. https://doi.org/10.1016/j.xphs.2019.11.019.

  51. Chieng N, Rades T, Aaltonen J. An overview of recent studies on the analysis of pharmaceutical polymorphs. J Pharm Biomed Anal. 2011;55:618–44. https://doi.org/10.1016/j.jpba.2010.12.020.

  52. Raina SA, Van Eerdenbrugh B, Alonzo DE, Mo H, Zhang GGZ, Gao Y, et al. Trends in the precipitation and crystallization behavior of supersaturated aqueous solutions of poorly water-soluble drugs assessed using synchrotron radiation. Pharm Sci. 2015;104:1981–92. https://doi.org/10.1002/jps.24423.

  53. Mistry P, Amponsah-Efah KK, Suryanarayanan R. Rapid assessment of the physical stability of amorphous solid dispersions. Cryst Growth Des. 2017;17:2478–85. https://doi.org/10.1021/acs.cgd.6b01901.

  54. Raghavan S, Trividic A, Davis A, Hadgraft J. Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm. 2001;212:213–21. https://doi.org/10.1016/S0378-5173(00)00610-4.

  55. Simonelli A, Mehta S, Higuchi WI. Inhibition of sulfathiazole crystal growth by polyvinylpyrrolidone. J Pharm Sci. 1970;59:633–8. https://doi.org/10.1002/jps.2600590512.

  56. Ilevbare GA, Liu H, Edgar KJ, Taylor LS. Understanding polymer properties important for crystal growth inhibition - impact of chemically diverse polymers on solution crystal growth of ritonavir. Cryst Growth Des. 2012;12:3133–43. https://doi.org/10.1021/cg300325p.

  57. Li J, Zhao J, Tao L, Wang J, Waknis V, Pan D, et al. The effect of polymeric excipients on the physical properties and performance of amorphous dispersions: part I, free volume and glass transition. Pharm Res. 2015;32:500–15. https://doi.org/10.1007/s11095-014-1478-0.

  58. Oksanen CA, Zografi G. The relationship between the glass transition temperature and water vapor absorption by poly (vinylpyrrolidone). Pharm Res. 1990;7:654–7. https://doi.org/10.1023/A:1015834715152.

  59. Andronis VV, Yoshioka M, Zografi G. Effects of sorbed water on the crystallization of indomethacin from the amorphous state. J Pharm Sci. 1997;86:346–51. https://doi.org/10.1021/js9602711.

  60. Konno H, Taylor LS. Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture. Pharm Res. 2008;25:969–78. https://doi.org/10.1007/s11095-007-9331-3.

  61. Sakai T, Hirai D, Kimura SI, Iwao Y, Itai S. Effects of tablet formulation and subsequent film coating on the supersaturated dissolution behavior of amorphous solid dispersions. Int J Pharm. 2018;540:171–7. https://doi.org/10.1016/j.ijpharm.2018.02.013.

  62. Kumar GP, Phani AR, Prasad RG, Sanganal JS, Manali N, Gupta R, et al. Polyvinylpyrrolidone oral films of enrofloxacin: film characterization and drug release. Int J Pharm. 2014;471:146–52. https://doi.org/10.1016/j.ijpharm.2014.05.033.

  63. David SRN, Rajabalaya R, Zhia ES. Development and in vitro evaluation of self-adhesive matrix-type transdermal delivery system of ondansetron hydrochloride. Trop J Pharm Res. 2015;14:211–8. https://doi.org/10.4314/tjpr.v14i2.4.

  64. Thakur RR, Tekko IA, Al-Shammari F, Ali AA, McCarthy H, Donnelly RF. Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery. Drug Deliv Transl Res. 2016;6:800–15. https://doi.org/10.1007/s13346-016-0332-9.

  65. Gao Y, Hou M, Yang R, Zhang L, Xu Z, Kang Y, Xue P. PEGDA/PVP microneedles with tailorable matrix constitutions for controllable transdermal drug delivery Macromolecular Materials and Engineering Macromol Mater Eng, 2018. DOI: https://doi.org/10.1002/mame.201800233.

  66. Khan S, Minhas MU, Tekko IA, Donnelly RF, Thakur RRS. Evaluation of microneedles-assisted in situ depot forming poloxamer gels for sustained transdermal drug delivery. Drug Deliv Transl Res. 2019;9:764–82. https://doi.org/10.1007/s13346-019-00617-2.

  67. Shim WS, Hwang YM, Park SG, Lee CK, Kang NG. Role of Polyvinylpyrrolidone in dissolving microneedle for efficient transdermal drug delivery: in vitro and clinical studies. Bull Kor Chem Soc. 2018;39:789–93. https://doi.org/10.1002/bkcs.11476.

  68. Dillon C, Hughes H, O'Reilly NJ, McLoughlin P. Formulation and characterisation of dissolving microneedles for the transdermal delivery of therapeutic peptides. Int J Pharm. 2017;526:125–36. https://doi.org/10.1016/j.ijpharm.2017.04.066.

  69. Qu L, Zhou QT, Gengenbach T, Denman JA, Stewart PJ, Hapgood KP, et al. Investigation of the potential for direct compaction of a fine ibuprofen powder dry-coated with magnesium stearate. Drug Dev Ind Pharm. 2015;41:825–37. https://doi.org/10.3109/03639045.2014.908901.

  70. W Gong W, Wang Y, Sun L, Yang J, Shan L, Yang M, Gao C. Development of itraconazole liquisolid compact: effect of polyvinylpyrrolidone on the dissolution properties. Curr Drug Deliv, 2016; 13: 452–461.

  71. Kim I, Kim H, Park K, Karki S, Khadka P, Jo K, et al. Viscoelastic interactions between polydeoxyribonucleotide and ophthalmic excipients. Drug Dev Ind Pharm. 2016;42:231–7. https://doi.org/10.3109/03639045.2015.1040417.

  72. Khlibsuwan R, Pongjanyakul T. Particle agglomeration of chitosan-magnesium aluminum silicate nanocomposites for direct compression tablets. Int J Pharm. 2018;535:410–9. https://doi.org/10.1016/j.ijpharm.2017.11.030.

  73. Liew KB, Tan YT, Peh KK. Effect of polymer, plasticizer and filler on orally disintegrating film. Drug Dev Ind Pharm. 2014;40:110–9. https://doi.org/10.3109/03639045.2012.749889.

  74. Sheth NS, Mistry RB. Formulation and evaluation of transdermal patches and to study permeation enhancement effect of eugenol. J Pharm Sci. 2011;1:96–101.

  75. Krishnaiah Y, Kumar MS, Raju V, Lakshmi M, Rama B. Penetration-enhancing effect of ethanolic solution of menthol on transdermal permeation of ondansetron hydrochloride across rat epidermis. Drug Deliv. 2008;15:227–34. https://doi.org/10.1080/10717540802006633.

  76. Birchall JC. Microneedle array technology: the time is right but is the science ready? Expert Rev Med Devices. 2006;3:1–4. https://doi.org/10.1586/17434440.3.1.1.

  77. Maaden KVD, Jiskoot W, Bouwstra J. Microneedle technologies for (trans) dermal drug and vaccine delivery. J Control Release. 2012;161:645–55. https://doi.org/10.1016/j.jconrel.2012.01.042.

  78. Ma G, Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: a review. J Control Release. 2017;251:11–23. https://doi.org/10.1016/j.jconrel.2017.02.011.

  79. Vinayakumar K, Rajanna K, Dinesh N, Nayak M. Out-of-plane cup shaped stainless steel microneedle array for drug delivery, IEEE 11th annual international conference on nano/micro engineered and molecular systems (NEMS), Sendai, Japan, April, 2016.

  80. Li QY, Zhang JN, Chen BZ, Wang QL, Guo XD. A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin. RSC Adv. 2017;7:15408–15. https://doi.org/10.1039/C6RA26759A.

  81. Dillon C, Hughes H, O'Reilly NJ, Allender CJ, Barrow DA, McLoughlin P. Dissolving microneedle based transdermal delivery of therapeutic peptide analogues. Int J Pharm. 2019;565:9–19. https://doi.org/10.1016/j.ijpharm.2019.04.075.

  82. Cole G, McCaffrey J, Ali AA, McBride JW, McCrudden CM, Vincente-Perez EM, et al. Dissolving microneedles for DNA vaccination: improving functionality via polymer characterization and RALA complexation. Hum Vaccin Immunother. 2017;13:50–62. https://doi.org/10.1080/21645515.2016.1248008.

  83. Pfeffer R, Dave RN, Wei D, Ramlakhan M. Synthesis of engineered particulates with tailored properties using dry particle coating. Powder Technol. 2001;117:40–67. https://doi.org/10.1016/S0032-5910(01)00314-X.

  84. Mullarney MP, Beach LE, Davé RN, Langdon BA, Polizzi M, Blackwood DO. Applying dry powder coatings to pharmaceutical powders using a comil for improving powder flow and bulk density. Powder Technol. 2011;212:397–402.

  85. Sun CC. Decoding powder tabletability: roles of particle adhesion and plasticity. J Adhes Sci Technol. 2011;25:483–99. https://doi.org/10.1163/016942410X525678.

  86. Mattsson S, Nyström C. Evaluation of critical binder properties affecting the compactibility of binary mixtures. Drug Dev Ind Pharm. 2001;27:181–94. https://doi.org/10.1081/ddc-100000236.

  87. Symecko C, Rhodes CJ. Binder functionality in tabletted systems. Drug Dev Ind Pharm. 1995;21:1091–114.

  88. Rojas J, Aristizabal J, Henao M. Screening of several excipients for direct compression of tablets: a new perspective based on functional properties. J Basic Appl Pharm Sci. 2013;34:17–23.

  89. Nokhodchi A, Aliakbar R, Desai S, Javadzadeh Y. Liquisolid compacts: the effect of cosolvent and HPMC on theophylline release. Colloids Surf., B, 2010; 79: 262–269. DOI: https://doi.org/10.1016/j.colsurfb.2010.04.008.

  90. Tiong N, Elkordy AA. Effects of liquisolid formulations on dissolution of naproxen. Eur J Pharm Biopharm. 2009;73:373–84. https://doi.org/10.1016/j.ejpb.2009.08.002.

  91. Ni R, Muenster U, Zhao J, Zhang L, Becker-Pelster EM, Rosenbruch M, et al. Exploring polyvinylpyrrolidone in the engineering of large porous PLGA microparticles via single emulsion method with tunable sustained release in the lung: in vitro and in vivo characterization. J Control Release. 2017;249:11–22. https://doi.org/10.1016/j.jconrel.2017.01.023.

  92. Li R, Yin T, Zhang Y, Gou J, He H, Tang X. Preparing of aspirin sustained-release granules by hot-melt granulation and micro-crystal coating. Drug Dev Ind Pharm. 2019;45:959–67. https://doi.org/10.1080/03639045.2019.1583756.

  93. Zhang S, Meng X, Wang Z, Fan A, Wang G, Zhao Y, et al. Engineering hot-melt extruded solid dispersion for controlled release of hydrophilic drugs. Eur J Pharm Sci. 2017;100:109–15. https://doi.org/10.1016/j.ejps.2017.01.009.

  94. Li X, Jiang Q, Du L, Wang C, Chi Q. In vitro and in vivo evaluation of novel osmotic pump tablets of isosorbide-5-mononitrate containing polyvinyl pyrrolidone (PVP) for controlled release. Pharmazie. 2012;67:695–700. https://doi.org/10.1691/ph.2012.1153.

  95. Garekani HA, Nokhodchi A, Rayeni MA, Sadeghi F. Preparation and characterization and release properties of Eudragit RS based ibuprofen pellets prepared by extrusion spheronization: effect of binder type and concentration. Drug Dev Ind Pharm. 2013;39(8):1238–46. https://doi.org/10.3109/03639045.2012.707207.

  96. Meeus J, Scurr DJ, Amssoms K, Wuyts K, Annaert P, Davies MC, et al. In vivo evaluation of different formulation strategies for sustained release injectables of a poorly soluble HIV protease inhibitor. J Control Release. 2015;199:1–9. https://doi.org/10.1016/j.jconrel.2014.11.020.

  97. Ouazib F, Bouslah Mokhnachi N, Haddadine N, Barille R. Role of polymer/polymer and polymer/drug specific interactions in drug delivery systems. J Polym Eng. 2019;39:534–44.

  98. Yusif RM, Hashim IIA, Mohamed EA, El Rakhawy MM. Investigation and evaluation of an in situ interpolymer complex of carbopol with polyvinylpyrrolidone as a matrix for gastroretentive tablets of ranitidine hydrochloride. Chem Pharm Bull. 2016;64:42–51. https://doi.org/10.1248/cpb.c15-00620.

  99. El Maghraby GM, Elsergany RN. Fast disintegrating tablets of nisoldipine for intra-oral administration. Pharm Dev Technol. 2014;19:641–50. https://doi.org/10.3109/10837450.2013.813543.

  100. Zhang X, Xu D, Jin X, Liu G, Liang S, Wang H, et al. Nanocapsules of therapeutic proteins with enhanced stability and long blood circulation for hyperuricemia management. J Control Release. 2017;255:54–61.

  101. El-Shenawy AA, Ahmed MM, Mansour HF, Abd El Rasoul S. Torsemide Fast dissolving tablets: development, optimization using Box-Bhenken design and response surface methodology, in vitro characterization, and pharmacokinetic assessment. AAPS PharmSciTech. 2017;18:2168–79. https://doi.org/10.1208/s12249-016-0697-6.

  102. Ford JL. The current status of solid dispersions. Pharm Acta Helv. 1986;61:69–88.

  103. Meeus J, Chen X, Scurr DJ, Ciarnelli V, Amssoms K, Roberts CJ, et al. Nanoscale surface characterization and miscibility study of a spray-dried injectable polymeric matrix consisting of poly (lactic-co-glycolic acid) and polyvinylpyrrolidone. J Pharm Sci. 2012;101:3473–85. https://doi.org/10.1002/jps.23131.

  104. Meeus J, Scurr DJ, Amssoms K, Davies MC, Roberts CJ, Van den Mooter G. Surface characteristics of spray-dried microspheres consisting of PLGA and PVP: relating the influence of heat and humidity to the thermal characteristics of these polymers. Mol Pharm. 2013;10:3213–24. https://doi.org/10.1021/mp400263d.

  105. Yusif RM, Hashim IIA, Mohamed EA, EI Rakhawy MM. Investigation and evaluation of an in situ interpolymer complex of carbopol with polyvinylpyrrolidone as a matrix for gastroretentive tablets of ranitidine hydrochloride. Chem Pharm Bull. 2016;64:42–51. https://doi.org/10.1248/cpb.c15-00620.

  106. Park H, Robinson JR. Mechanisms of mucoadhesion of poly (acrylic acid) hydrogels. Pharm Res. 1987;4:457–64. https://doi.org/10.1023/A:1016467219657.

  107. Kockisch S, Rees GD, Young SA, Tsibouklis J, Smart JD. Polymeric microspheres for drug delivery to the oral cavity: an in vitro evaluation of mucoadhesive potential. J Pharm Sci. 2003;92:1614–23. https://doi.org/10.1002/jps.10423.

  108. Oechsner M, Keipert S. Polyacrylic acid/polyvinylpyrrolidone bipolymeric systems. I Rheological and mucoadhesive properties of formulations potentially useful for the treatment of dry-eye-syndrome. Eur J Pharm Biopharm. 1999;47:113–8. https://doi.org/10.1016/s0939-6411(98)00070-8.

  109. Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics. 2013;5(4):542–69.

  110. Salmaso S, Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Delivery. 2013. https://doi.org/10.1155/2013/374252.

  111. Markiewski MM, Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. Complement and coagulation: strangers or partners in crime? Trends Immunol. 2007;28:184–92. https://doi.org/10.1016/j.it.2007.02.006.

  112. Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. The role of complement in biomaterial-induced inflammation. Mol Immunol. 2007;44:82–94. https://doi.org/10.1016/j.molimm.2006.06.020.

  113. Molineux P. Water soluble synthetic polymers; properties and behavior. London: CRC Press; 1983.

  114. Torchilin VP, Shtilman MI, Trubetskoy VS, Whiteman K, Milstein AM. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. BBA - Biomembranes. 1994;1195:181–4. https://doi.org/10.1016/0005-2736(94)90025-6.

  115. Pang SNJ. Final report on the safety assessment of polyethylene glycols (PEGs)-6,-8,-32,-75,-150,-14M,-20M. J Am Coll Toxicol. 1993;12:429–57. https://doi.org/10.1016/1056-8719(93)90014-6.

  116. Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly (ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci. 1994;83:601–6. https://doi.org/10.1002/jps.2600830432.

  117. Zalipsky S. Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv Drug Deliv Rev. 1995;16:157–82. https://doi.org/10.1016/0169-409X(95)00023-Z.

  118. Zhao Y, Wang L, Yan M, Ma Y, Zang G, She Z, et al. Repeated injection of PEGylated solid lipid nanoparticles induces accelerated blood clearance in mice and beagles. Int J Nanomedicine. 2012;7:2891–900.

  119. Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release. 2006;112:15–25. https://doi.org/10.1016/j.jconrel.2006.01.005.

  120. Kierstead PH, Okochi H, Venditto VJ, Chuong TC, Kivimae S, Frechet JMJ, et al. The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes. J Control Release. 2015;213:1–9. https://doi.org/10.1016/j.jconrel.2015.06.023.

  121. Evans E, Klingenberg D, Rawicz W, Szoka F. Interactions between polymer-grafted membranes in concentrated solutions of free polymer. Langmuir. 1996;12:3031–7.

  122. Jeon S, Lee J, Andrade J, De Gennes P. Protein—surface interactions in the presence of polyethylene oxide: I. Simplified theory. J Colloid Interface Sci. 1991;142:149–58. https://doi.org/10.1016/0021-9797(91)90043-8.

  123. Carrstensen H, Mueller RH, Müller BW. Particle size, surface hydrophobicity and interaction with serum of parenteral fat emulsions and model drug carriers as parameters related to RES uptake. Clin Nutr. 1992;11:289–97. https://doi.org/10.1016/0261-5614(92)90006-C.

  124. Liu Y, Luo X, Xu X, Gao N, Liu X. Preparation, characterization and in vivo pharmacokinetic study of PVP-modified oleanolic acid liposomes. Int J Pharm. 2017;517:1–7. https://doi.org/10.1016/j.ijpharm.2016.11.056.

  125. Torchilin VP, Levchenko TS, Whiteman KR, Yaroslavov AA, Tsatsakis AM, Rizos AK, et al. Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials. 2001;22:3035–44. https://doi.org/10.1016/S0142-9612(01)00050-3.

  126. Vasir JK, Tambwekar K, Garg S. Bioadhesive microspheres as a controlled drug delivery system. Int J Pharm. 2003;255:13–32. https://doi.org/10.1016/s0378-5173(03)00087-5.

  127. Asbahr ACC, Franco L, Barison A, Silva CW, Ferraz HG, Rodrigues LN. Binary and ternary inclusion complexes of finasteride in HPβCD and polymers: preparation and characterization. Med Chem. 2009;17:2718–23. https://doi.org/10.1016/j.bmc.2009.02.044.

  128. Srivalli KMR, Mishra B. Improved aqueous solubility and antihypercholesterolemic activity of ezetimibe on formulating with hydroxypropyl-β-cyclodextrin and hydrophilic auxiliary substances. AAPS PharmSciTech. 2015;17:272–83. https://doi.org/10.1208/s12249-015-0344-7.

  129. Taupitz T, Dressman JB, Buchanan CM, Klein S. Cyclodextrin-water soluble polymer ternary complexes enhance the solubility and dissolution behaviour of poorly soluble drugs. Case example: itraconazole. Eur J Pharm Biopharm. 2013;83:378–87. https://doi.org/10.1016/j.ejpb.2012.11.003.

  130. Soliman KA, Ibrahim HK, Ghorab MM. Effect of different polymers on avanafil-beta-cyclodextrin inclusion complex: in vitro and in vivo evaluation. Int J Pharm. 2016;512:168–77.

  131. Patel AR, Vavia PR. Effect of hydrophilic polymer on solubilization of fenofibrate by cyclodextrin complexation. J Incl Phenom Macrocycl Chem. 2006;56:247–51. https://doi.org/10.1007/s10847-006-9091-4.

  132. Hassan M, Shanbaz N, Khan SI, Khan I. Formulation and evaluation of taste masked orally disintegrating tablets of itopride HCl using hydrophillic polymers as drug carrier. Lat Am J Pharm. 2015;34:1364–72.

  133. Abdelbary G, Eouani C, Prinderre P, Joachim J, Reynier J, Piccerelle PH. Determination of the in vitro disintegration profile of rapidly disintegrating tablets and correlation with oral disintegration. Int J Pharm. 2005;292:29–41. https://doi.org/10.1016/j.ijpharm.2004.08.019.

  134. Robson H, Craig D, Deutsch D. An investigation into the release of cefuroxime axetil from taste-masked stearic acid microspheres. III The use of DSC and HSDSC as means of characterising the interaction of the microspheres with buffered media. Int J Pharm. 2000;201:211–9. https://doi.org/10.1016/S0378-5173(00)00416-6.

  135. Bonferoni MC, Rossi S, Ferrari F, Bertoni M, Sinistri R. Characterization of three hydroxypropylmethylcellulose substitution types: rheological properties and dissolution behaviour. Eur J Pharm Biopharm. 1995;41:242–6.

If you have any questions on cas 9003-39-8. We will give the professional answers to your questions.