What is the Advantage and Disadvantage of N,N’-Dimethyl Urea Wholesale

05 May.,2025

 

Low Melting Mixture of L-(+)-Tartaric Acid and N,N′-Dimethyl Urea

1. Introduction

As can be inspected from the literature, there were rising concerns in the mid-s, regarding the plentiful of the waste being produced by the chemical industry [1, 2]. A paradigm change was undoubtedly desirable, from the old-fashioned perceptions of reaction selectivity, and efficiency which emphasis fundamentally on the chemical yields, to one that allocates the value to the enlargement of the bulk raw materials exploitation, avoidance of the utilization of the hazardous chemicals/reagents/solvents and also preventation of the waste being formed within the boundaries of environmental awareness. To this context, in , the term sustainable development was coined by Brundtland, in his report; he mainly focused on the emergence of the societal and industrial development to afford an escalating global population with a suitable value of life in such a way that it should be sustainable over a long period of time [3]. Therefore, complete balance necessities to be found among the three Ps-planet, people, profit i.e. environmental impact, societal equity and economic development. More specifically, in sharp contrast to the green chemistry, sustainable development also comprises an economic factor and if a technology is not economically viable, it could not be sustainable for a long time. Remarkably, a tremendous curiosity in sustainable and green progress, united with a cultivating concern for the climate change, has engrossed attention on resource competence and also driving the shift from a conventional linear flow of bulk materials in a “take−make−use−dispose”economy, towards the greener and even more sustainable globular economy. Interestingly, since the 12 principles of green chemistry (Prevention of waste; Atom economy; Less hazardous chemical syntheses; Designing safer chemicals with fewer hazards; Safer solvents and auxiliaries; Design for energy efficiency; Use of renewable feedstocks; Reduce derivatives during synthesis; Catalysis; Design for degradation; Real-time analysis for pollution prevention; Inherently safer chemistry for accident prevention), postulated by Anastas & Warner in [4], scientists around the world are trying to reduce the volatile organic solvents (VOCs) which generally are the major portion (approx. 80% of the total content) of the reaction vessel as compare to the reactants/reagents, and also has the tendency to escape into the environment, which in turns contribute to ozone depletion as well as smog in urban areas, and hence extremely dangerous for mankind [5]. Therefore, great efforts are being put forward to reduce these hazardous VOCs, and the corrosive acid catalysts, participating in the reaction to make the chemical processes even more sustainable and environmentally friendlier [6]. To this context, over the past few decades, several surrogates for instance water, ionic liquids, supercritical fluids, and switchable solvents in addition to many green strategies such as ultrasound, flow chemistry, biocatalysis, microwaves, and multi-component etc., have successfully been developed [7, 8, 9]. Generally, water is thought to be an archetype solvent as it enjoy many classical properties, nonetheless it not only suffer from insolubility issues with the majority of organic compounds but also has a difficulty of removing it after the completion of the reaction because of its high boiling point, and even in many cases compounds gets decompose into the water in addition, some reactions for example amidations and transesterifications, can not be performed in water because of competing product hydrolysis [10]. On the other hand, supercritical fluids which possess low vapor pressure along with the advantages of easy disposal/removal, and recycling, are thought to be the best eco-friendly substitutes of VOCs, but, they requires more sophisticated equipment to perform the reaction. To this context, researchers turn their attention towards the ionic liquids due to their remarkable physiochemical properties but owing to their high cost as well as involvement of the non-renewable resources besides purification before their usage make them of bit doubt from green perception [11]. Consequently, bearing in mind, the urgency of the suitable alternative green solvents in place of conventional solvents to carry out the crucial synthetic transformations for sustainable development in R and D and also for the chemical industry, Abbott’s discovery of the deep eutectic solvents (DESs), also known as low transition temperature mixtures (LTTMs), or low-melting mixtures (LMMs) or deep eutectic ionic liquids (DEILs), has become one of the strongest pillars to the modern synthetic community. Generally, in DES, two/three components are mixed in an appropriate amount to generate a eutectic mixture with lower melting point as compare to the individual components being used [12, 13, 14, 15]. As a consequence, an infinite number of melts involving different compositions/components with distinctive properties like price of the raw materials, melting point, polarity, dissolving ability etc., can be accomplished effortlessly. Interestingly, because of the involvement of non-covalent interactions including hydrogen bonds, it has been noticed that the melting points of the DESs are generally below 100°C, even some of them are liquid at room temperature, and they have been the role model among the greener solvents over the past two decades to both academic as well as industrial community because of their remarkable properties and benefits such as biodegradability, low cost and low vapor pressure in addition to non-toxicity and good thermal stability. Among the DESs, a low melting mixture of DMU/TA can be regarded as the solvent of the 21st century, as it hold the following features: (i) Generally, it does not require tedious work-up after the reaction is being completed, rather, just filtration after addition of the water to the reaction mixture while hot, furnishes the analytically pure compounds and most of the time no need of chromatographic purification but simple recrystallization provides the pure form of the required products; (ii) the melting mixture can willingly be recovered and recycled several times without any substantial loss in the activity; (iii) the reaction cleanly underwent towards the product formation at faster rate as compare to the known procedure, and mostly better yields are obtained under operationally simple reaction conditions; (iv) No additional catalyst and solvents are needed in this method, as in conventional procedure, generally both, the corrosive catalysts as well as hazardous, flammable, and volatile organic solvents are being employed; (v) No inert atmosphere is required for a reaction to be successfully completed in parallel yields; (vi) This method also provide good selectivity and also exhibit excellent functional group tolerance; (vii) Easy preparation of the melt from the bulk renewable resources and no further purification before its utilization is needed; (viii) improved safety and very simple handling as comparison to the conventional practices.

Guangxing contains other products and information you need, so please check it out.

Bearing all the above mentioned applications and peculiar physiochemical properties of the DMU/TA melt in mind, which we still feel is immature, although employed for a variety of successful reactions for instance Diels-Alder reaction, Stille, Sonogashira, Suzuki, and Heck coupling reactions, Biginelli reaction, 1,3-dipolar reaction, in addition to its applicability for the synthesis of quinolines, arylhomophthalimides, prymidopyrimidinediones, tetrahydropyrimidinones, hydantoins, dihydropyrimidinones, quinazolines, and a variety of functionalized indole systems with excellent selectivity in decent yields. Interestingly, the beauty of this method is its double and triple role in the reaction vessel to facilitate the accomplishment of the reactions in a clean and smooth fashion without the involvement of any catalyst/additives or solvent. In short, after a brief introduction related to the sustainability and green synthetic approaches, herewith, we have tried to display a deep survey of what has already been done in this field, and open the opportunities to the young researches to find out the new advances by employing this DES and also medium engineering might be utilized to optimize the synthetic utility of various other combinations of the DESs. Green chemistry 12 principles as well as the achievements made by employing a low melting mixture of DMU/TA in the domain of synthetic organic chemistry are displayed in the Figure 1.

Advertisement

2. Construction of indole systems under a low melting mixture of DMU/TA

The name indole was originated from portmanteau, a combination of both the words, indigo and oleum which was first isolated from the indigo dye, while treating it with oleum [16, 17]. As can be inspected from the literature, indole scaffold, a notable privileged lead bicyclic aromatic system (10π-electrons), formally known as benzopyrrole, have immeasurable potential applications ranging from the broad-spectrum biological (e.g. anti-HIV, antiviral, antimicrobial, antidiabetic, antimalarial, anti-cholinesterase, anticancer, anti-inflammatory, antioxidant, anti-tubercular, anti-hypertensive, anti-convulsant, anti-analgesic, and anti-depressant activities etc.), agrochemical and clinical applications to the novel therapeutic agents in addition to their usage as dyes, and smart functional materials as well [18, 19, 20]. Interestingly, this venerable heterocyclic moiety is not only a part of several important drug molecules and remarkable receptors in host-guest chemistry but also reside in a variety of medicinally active natural products for instance strychnine, reserpine, alstonine etc.; widespread in diverse species of animals, plants, marine organisms, and the part of lysergic acid diethylamide (LSD) as well [21]. More interestingly, they have inimitable property of mimicking the structure of peptides and nicely bind to the enzymes, in addition to exhibit the momentous pharmacological, physiological, synthetic and industrial applications [22]. A list of some important biologically active molecules (1–12) containing the indole moiety is depicted in the Figure 2 [23, 24].

The typical Fischer indolization (FI) reaction involving arylhydrazine (13) and aldehyde/ketone (14) in the presence of appropriate acid or acid catalyst along with its systematic mechanistic pathway is displayed in the Figure 3. Although, a number of pathways were anticipated for the FI, but the one proposed in by G.M. Robinson and R. Robinson was the most accepted by the scientific community as it was established by both kinetic as well as the spectroscopic means (Figure 3) [25]. The mechanism for this particular reaction commence with the activation of the carbonyl carbon of 14 through the protonation with acid/acid catalyst, employed in the operation, which on further reaction with 13 provide the N-arylhydrazone intermediate (17). Next, the intermediate (17) afforded the ene-hydrazine intermediate (18) by means of tautomerization, which upon subsequent [3,3]-sigmatropic rearrangement, distracting the aromaticity of aryl ring system, followed by rearomatization deliver another intermediate (20) through the bis-iminobenzyl ketone (19). Latter furnishes the required indole derivatives (15) by virtue of cyclization followed by the loss of ammonia molecule via21 (Figure 3). Interestingly, it has been observed that the reaction conditions as well as the nature of the substrate decide the rate determining step (rds). Generally, ene-hydrazine intermediate (18) formation or the [3,3]-sigmatropic rearrangement step has been noticed as the rate-limiting step depending on the situation, as discussed further below. The [3,3]-sigmatropic rearrangement has been observed as rate determining step, in a specific case of α-N-acyl hydrazones in addition to weak acidic solutions as well as when ammonia elimination is prevented due to steric effects [25]. Whileas, in most of the cases including the strong acidic condition favors the ene-hydrazine (18) formation as the rds-step of the reaction. More specifically, unsymmetrical 1,l-diarylhydrazines under strong acidic condition provide the indolization at most activated ring (i.e. most susceptible to the protonation), whileas under neutral reaction conditions almost equal amount of isomers are generally being formed.

Accordingly, synthetic chemists have long sought approaches for the construction of indole architectures, and a plethora of methods continue to be reported in this trend [26]. Hardly surprising, to date, a myriad of methods involving both intra- and intermolecular transformations for the construction of indole derivatives, particularly the usage of named reactions such as, Gassman, Bartoli, Thyagarajan, Julia, Schmid, Wender, Couture, Kihara, Nenitzescu, Engler, Saegusa, Liebeskind, Sundberg, Hemetsberger, Magnus, Feldman, Reissert, Makosza, Leimgruber–Batcho, Watanabe, Larock, Yamanaka–Sakamoto, Hegedus–Mori–Heck, Fürstner, Castro, Natsume, Nordlander, and so on, have successfully been employed [27]. But, to our best knowledge, despite its numerous complications, rearrangements, and also mechanistic mysteries, Fischer indole protocol, an old yet effective procedure which involve a pericyclic tool namely, [3,3]-sigmatropic rearrangement, remains the epitome for the scientific community around the globe to assemble diverse indole and its congeners [28]. Although, a variety of acid catalysts for example HCl, AcOH, PPA, TiCl4, ZnCl2, SOCl2, PCl3, TsOH, H2SO4, mont-morilloniteclay zeolite etc., have been employed to synthesize the indole framework using FI protocol, but simple, and eco-friendly methods which involve non-hazardous, inexpensive and easily accessible chemicals as well as reagents utilizing the environmentally benign practices are always of particular interest. In this regard, König’s group in , first time reported a green approach by employing the FI strategy under a low melting mixture of dimethyl urea (DMU):L-(+)-tartaric acid (TA) in (7:3) ratio to yield a range of indole derivatives in good-to-excellent yields [24]. The beauty of this particular green method relies on the fact that, a clean low melting mixture is generated just by heating the two components in appropriate amount at much lower temperature than its individual components, and can be used without further purification. Herewith, the low melting mixture, acts as mild acidic catalyst (pH 3.7) as well as solvent to furnish the required indoles with great functional group compatibility and selectivity. As can be seen from an inspection of the Figure 4, these authors prepared a range of functionalized indole systems (2247) in decent yields using acyclic and cyclicketones in addition to cyclic enol ethers for instance dihydrofuran and dihydropyran. Fascinatingly, optically active ketone deliver the indole with retention of the configuration. Moreover, indolenines (31), was also prepared through this powerful technique in respectable yields under mild reaction conditions (Figure 4). Besides, hormone melatonin (25) and dimebon (26) were also obtained by utilizing this wonderful green approach as a crucial step (Figure 4). Inspiring form this simple yet powerful procedure and also from the applications of the indole moiety containing molecules, two years later to this report, in , Kotha and his teammates have successfully employed this strategy for the synthesis of C2-and Cs-symmetric bis-indole systems (52, 53, 58, 60–62) from bicyclo-3,7-diones and 1-methyl-1-phenylhydrazine under DMU/TA (7:3) reaction conditions (Figure 5) [29]. Later on, Kotha’s team nicely expanded this delightful method for the generation of a variety of carbazole derivatives (32–35) including pyrano-carbazole (36) and aza-cyclophane based carbazoles (37 and 38) as depicted Figure 4 [30, 31, 32] in Figure 4. Interestingly, utilizing this tactic, they have also prepared carbazole-based natural products such as tijapinazole D (32) and tijapinazole I (33) in addition to the crown-based indolocarbazole (47). Moreover, in the laboratory of Kotha’s group, diverse hetero-polycyclic compounds (39–43) in addition to the propellane derivatives (44) have been assembled by using ring-closing metathesis (RCM) and Fischer indolization in a low melting mixture of DMU/TA as crucial steps, (Figure 4) [33, 34, 35]. Keeping the importance of C3-symmetric molecules in medicinal and bioorganic chemistry besides their vital role in material science and technology, the same group has also prepared star-shaped C3-symmetric compounds 45 and 46 involving cyclotrimerization and DMU/TA mediated indolization approach (Figure 4) [36]. Furthermore, as can be inspected from the Figure 5, they design and constructed varied cyclophane derivatives (48, 49, 54, 55 and 59) through the involvement of the Grignard reaction, RCM and a low melting mixture mediated indolization sequences in respectable yields because of their applicability in supramolecular chemistry [37, 38, 39, 40, 41]. In addition to these, Kotha’s group has also prepared diverse polycyclic mono- (50, 56, 63) and bis-indole derivatives (51, 57, 58, 64) by means of a deep eutectic mixture of DMU/TA (70:30) under operationally simple reaction conditions [42, 43, 44, 45].

Advertisement

3. Synthesis of bis-(indolyl)methane, indenylindoles and 2,2-disubstituted indolin-3-ones

In recent past, bis-(indolyl)methanes (BIMs) have attracted a tremendous attention of the research community due to their potential applications both in pharmaceuticals and agrochemicals besides their activity in breast tumor cells, bladder cancer and also inhibits proliferation practice as well. Moreover, they display antitumorgenic, antibiotic, antimicrobial activity and anti-inflammatory activities etc., and are mostly found in marine natural sources. Fascinatingly, getting inspired from the above applications and also other, if any, the group of Nagarajan constructed the diverse BIMs (67) including the natural products arsindoline A and B via a green protocol in the presence of DMU:TA (70:30) (Figure 6) [46]. Surprisingly, the BIMs were not formed when instead of aldehydes (66); cyclicketones (68) were treated with indole derivatives in the Kotha’s laboratory, rather they received indenylindoles (dienes) 69 under parallel reaction conditions (Figure 6) [30]. On the other hand, it has been found that, numerous medicinally active natural and non-natural products possess 2,2-disubstituted indolin-3-one scaffold in addition to their usage as the key building blocks in the total synthesis of diverse indole alkaloids. In this regard, Xie’s group involved a deep eutectic mixture of DMU/TA to furnish a range of 2,2-disubstituted indolin-3-one derivatives (72) as displayed in the Figure 6 [47].

Synthesis of heterocyclic compounds has always been of prime importance to the research community because of their vital role in a numerous areas ranging from material sciences and technology to the pharmaceutical and agrochemical industries. To the best of our knowledge, to date, a choice of drugs containing heterocyclic scaffolds are available in the world market, and many hundred are under clinical trials around the globe. Therefore, there are always high demands to develop novel strategies for the generation of heterocyclic systems particularly involving milder reaction conditions in an environmentally friendlier manner from easily assessable bulk materials. To this context, although a number of methods having several advantages and disadvantages are available in the literature but in recent years, the deep eutectic solvents have changed the scenario of modern synthetic chemistry by providing a plethora of green approaches towards the construction of these valuable molecules. Among the heterocyclic systems, quinoline scaffold has received a considerable amount of interest because of its availability in a plethora of bioactive molecules. A very simple yet effective green procedure for the synthesis of a variety of quinoline derivatives (75) have been developed by Zhang and his co-workers with the involvement of a low melting mixture of DMU:TA (70:30) in moderate-to-excellent yields in a Friedländer fashion (Figure 7) [48]. On the other hand, the Biginelli procedure, a multi-component reaction, has been employed for assembling the dihydropyrimidinones (DHPMs) under a green reaction conditions by Köenig’s team because of their utility in calcium channel blockers and also as HIV inhibitors and anticancer agent (Figure 7) [49]. Captivatingly, this procedure works equally well with masked aldehydes to furnish the required DHPMs in reasonable yields. In another study, the same group has utilized this powerful green methodology for assembling diverse functionalized pyrimidopyrimidinedione derivatives (85) with the help of Biginelli reaction in which the low melting mixture play a triple role such as solvent/catalyst/reagent (Figure 7) [50]. In this study, although, they have tried several low melting mixtures but DMU/TA in a ratio of 7:3 provided the best results.

In a separate study, Krishnakumar et al., has reported a green chemical procedure for the construction of N-arylhomophthalimides (83) by employing the Michael addition reaction of the Michael-donor (homophthalimides) 82 with Michael-acceptor (chalcones) 81 in DMU:TA low melting mixture (Figure 7) [51]. In this report, the authors have screened various reaction conditions but the mention conditions provided the good results for both electron withdrawing as well as electron donating groups containing contestants.

The hydantoin and its congeners are the key scaffolds from biological point of view as they are the part of various molecules which exhibit a range of activities for instance antidepressants, antiulcer, antidiabetic agents, anticonvulsant, antiarrhythmic, and antiviral etc. Moreover, this moiety also play a significant role in agrochemistry, cosmetic industry, dye-sensitized solar cells, chiral auxiliaries and also used as the intermediates for the generation of enantiomerically pure natural and non-natural α-amino acids by means of the dynamic kinetic resolution. Therefore, keeping the consequence of these molecules in mind, König’s group in developed a simple and eco-friendly method for the synthesis of 1,3,5-trisubstituted hydantoin derivatives (93/94) in excellent yields by means of DMU/TA melt-mediated green approach (Figure 7) [52]. Interestingly, during their experimentation, they noted down good diastereoselectivity in which anti-isomers were isolated in major amount whileas syn-diastereomers were obtained as minor products, confirmed by nuclear overhauser effect (NOE) and X-ray analysis means. On another front, quite recently, Kotha’s team has reported mono-hydantoins as well as thiohydantoins by means of three component reaction under low melting mixture of DMU/TA with electron neutral, electron donating, and electron withdrawing groups possessing aniline derivatives (Figure 7) [53]. Finally, the tetrahydropyrimidinones (80) and quinazoline derivatives (88) have been reported, by the groups of Baskaran and Zhang, respectively by employing the same low melting mixture of DMU/TA under similar reaction conditions as can be inspected from the Figure 7 [54, 55].

Advertisement

4. Conclusions and outlook

In summary, a novel method involving DMU/TA as a low melting mixture has comprehensively been revealed in this chapter, depicting its pivotal role in the heart of modern synthetic organic chemistry particularly for the generation of a variety of valuable heterocyclic systems. Herein, we have disclosed, a decade advancements made in this field since its inspection (). As discussed above in detail, this simple, environmentally benign, cost effective, and productive method has already been shown its impact in the domain of modern preparative chemistry in general, and green chemistry in particular. We assure that this chapter based on greener transformations, will not only help the readers for complete understanding of a low melting mixture of DMU/TA, and its contribution towards the vital synthetic organic transformations, but also would inspire the motivated researchers to exploit the masked opportunities. More importantly, this method might provide a new way to the chiral catalyst mediated reaction since herewith, chiral tartaric acid is part of the melt, and may act as a valuable handle for the generation of chirality in a molecule under the operation.

Advertisement

Acknowledgments

Dr. Rashid Ali is grateful to DST-SERB New Delhi for financial support (Project File no. ECR//). In addition, he also thanks Jamia Millia Islamia, New Delhi, India, for providing the necessary research facilities.

Use of n,n'-(dimethyl) urons and method for curing epoxy resin ...

EPB1 - Use of n,n'-(dimethyl) urons and method for curing epoxy resin compositions - Google Patents

Use of n,n'-(dimethyl) urons and method for curing epoxy resin compositions Download PDF

Info

Publication number
EPB1
EPB1 EP.1A EPA EPB1 EP B1 EP B1 EP B1 EP A EP A EP A EP B1 EP B1 EP B1
Authority
EP
European Patent Office
Prior art keywords
epoxy resin
resin composition
curing
dimethyl
urone
Prior art date
-11-15
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP.1A
Other languages
German (de)
French (fr)
Other versions
EPA1 (en
Inventor
Torsten Eichhorn
Claudia Winkler
Martin Ebner
Hans-Peter Krimmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alzchem AG
Original Assignee
Alzchem AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
-11-15
Filing date
-11-14
Publication date
-05-06
-11-14 Application filed by Alzchem AG filed Critical Alzchem AG
-11-14 Priority to SIT priority Critical patent/SIT1/en
-11-14 Priority to PLT priority patent/PLT3/en
-09-24 Publication of EPA1 publication Critical patent/EPA1/en
-05-06 Application granted granted Critical
-05-06 Publication of EPB1 publication Critical patent/EPB1/en
Status Active legal-status Critical Current
-11-14 Anticipated expiration legal-status Critical

Links

  • Espacenet
  • EPO GPI
  • EP Register
  • Global Dossier
  • Discuss
  • mixture Substances 0.000 title claims description 199
  • epoxy resin Substances 0.000 title claims description 159
  • polyepoxide Polymers 0.000 title claims description 159
  • method Methods 0.000 title claims description 34
  • nitrogen Inorganic materials 0.000 claims description 98
  • LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 31
  • chemical substances by application Substances 0.000 claims description 29
  • resin Polymers 0.000 claims description 28
  • resin Substances 0.000 claims description 28
  • IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 18
  • manufacturing process Methods 0.000 claims description 18
  • catalyst Substances 0.000 claims description 13
  • MGJKQDOBUOMPEZ-UHFFFAOYSA-N N,N'-dimethylurea Chemical compound CNC(=O)NC MGJKQDOBUOMPEZ-UHFFFAOYSA-N 0.000 claims description 12
  • composite material Substances 0.000 claims description 11
  • glycidyl group Chemical group C(C1CO1)* 0.000 claims description 11
  • moulding Methods 0.000 claims description 11
  • polyether Polymers 0.000 claims description 11
  • Polyphenylene oxide Substances 0.000 claims description 8
  • PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 claims description 8
  • VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 5
  • VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 claims description 4
  • UETWDALPWUJVBV-UHFFFAOYSA-N 3-[5-(dimethylcarbamoylamino)naphthalen-1-yl]-1,1-dimethylurea Chemical compound C1=CC=C2C(NC(=O)N(C)C)=CC=CC2=C1NC(=O)N(C)C UETWDALPWUJVBV-UHFFFAOYSA-N 0.000 claims description 4
  • JZGGZNWADMJJCC-UHFFFAOYSA-N 3-[6-(dimethylcarbamoylamino)hexyl]-1,1-dimethylurea Chemical compound CN(C)C(=O)NCCCCCCNC(=O)N(C)C JZGGZNWADMJJCC-UHFFFAOYSA-N 0.000 claims description 4
  • novolac Polymers 0.000 claims description 4
  • reinforcing material Substances 0.000 claims description 4
  • ZXOSDAPFBLWBEB-UHFFFAOYSA-N 3-[[3-[(dimethylcarbamoylamino)methyl]phenyl]methyl]-1,1-dimethylurea Chemical compound CN(C)C(=O)NCC1=CC=CC(CNC(=O)N(C)C)=C1 ZXOSDAPFBLWBEB-UHFFFAOYSA-N 0.000 claims description 3
  • SMGPKUIDJQMBPE-UHFFFAOYSA-N 3-[4-(dimethylcarbamoylamino)phenyl]-1,1-dimethylurea Chemical compound CN(C)C(=O)NC1=CC=C(NC(=O)N(C)C)C=C1 SMGPKUIDJQMBPE-UHFFFAOYSA-N 0.000 claims description 2
  • reinforcing effect Effects 0.000 claims description 2
  • carrier material Substances 0.000 claims 1
  • polyfunctional curative Substances 0.000 description 49
  • dimethyl group Chemical group [H]C([H])([H])* 0.000 description 38
  • formulation Methods 0.000 description 35
  • QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 23
  • measurement Methods 0.000 description 14
  • chemical reaction Methods 0.000 description 12
  • compounds Chemical class 0.000 description 10
  • heat treatment Methods 0.000 description 9
  • process Effects 0.000 description 9
  • alkyl group Chemical group 0.000 description 7
  • fiber Substances 0.000 description 7
  • blister Diseases 0.000 description 6
  • reaction mixture Substances 0.000 description 6
  • substituent group Chemical group 0.000 description 6
  • additive Substances 0.000 description 5
  • material Substances 0.000 description 5
  • reactivity Effects 0.000 description 5
  • -1 rotor blades Chemical compound 0.000 description 5
  • sample Substances 0.000 description 5
  • substance Substances 0.000 description 5
  • thermal hair damage Effects 0.000 description 5
  • YBBLOADPFWKNGS-UHFFFAOYSA-N 1,1-dimethylurea Chemical compound CN(C)C(N)=O YBBLOADPFWKNGS-UHFFFAOYSA-N 0.000 description 4
  • Ammi visnaga Species 0.000 description 4
  • carbon Inorganic materials 0.000 description 4
  • glass transition Effects 0.000 description 4
  • halogen Inorganic materials 0.000 description 4
  • halogens Chemical class 0.000 description 4
  • infusion Methods 0.000 description 4
  • solid Substances 0.000 description 4
  • aliphatic group Chemical group 0.000 description 3
  • aryl group Chemical group 0.000 description 3
  • carbon atom Chemical group C* 0.000 description 3
  • cycloalkyl group Chemical group 0.000 description 3
  • cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
  • ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
  • heat dissipation Effects 0.000 description 3
  • injection Methods 0.000 description 3
  • injection Substances 0.000 description 3
  • investigation Methods 0.000 description 3
  • latent hardener Substances 0.000 description 3
  • methyl group Chemical group [H]C([H])([H])* 0.000 description 3
  • storage Methods 0.000 description 3
  • thermosetting polymer Polymers 0.000 description 3
  • PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical class NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
  • Ammi visnaga Nutrition 0.000 description 2
  • PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
  • WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
  • ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
  • PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
  • amines Chemical class 0.000 description 2
  • anhydrides Chemical class 0.000 description 2
  • benefit Effects 0.000 description 2
  • WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
  • GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
  • bromium Inorganic materials 0.000 description 2
  • butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
  • change Effects 0.000 description 2
  • chlorine Inorganic materials 0.000 description 2
  • chlorine Substances 0.000 description 2
  • cooling Methods 0.000 description 2
  • epoxy group Chemical group 0.000 description 2
  • fluorine Inorganic materials 0.000 description 2
  • fluorine Substances 0.000 description 2
  • flux Effects 0.000 description 2
  • irregular Effects 0.000 description 2
  • liquid Substances 0.000 description 2
  • preparation method Methods 0.000 description 2
  • propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
  • semicarbazones Chemical class 0.000 description 2
  • testing method Methods 0.000 description 2
  • wood Substances 0.000 description 2
  • 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
  • KDQTUCKOAOGTLT-UHFFFAOYSA-N 3-[3-(dimethylcarbamoylamino)-4-methylphenyl]-1,1-dimethylurea Chemical compound CN(C)C(=O)NC1=CC=C(C)C(NC(=O)N(C)C)=C1 KDQTUCKOAOGTLT-UHFFFAOYSA-N 0.000 description 1
  • 3-methylbutan-2-yl group Chemical group [H]C([H])([H])C([H])(*)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
  • YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical class C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
  • BF3 Inorganic materials 0.000 description 1
  • OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
  • RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
  • Epoxy Substances 0.000 description 1
  • IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
  • Euphoric mood Diseases 0.000 description 1
  • Impact Modifier Substances 0.000 description 1
  • OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
  • Polyamide Substances 0.000 description 1
  • RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical class [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
  • accumulation Methods 0.000 description 1
  • aluminium Inorganic materials 0.000 description 1
  • XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
  • amino resin Polymers 0.000 description 1
  • anilines Chemical class 0.000 description 1
  • aramid Substances 0.000 description 1
  • aromatic amines Chemical class 0.000 description 1
  • aromatic polyamide Polymers 0.000 description 1
  • carboxylic acids Chemical class 0.000 description 1
  • cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
  • cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
  • cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
  • cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
  • damage Effects 0.000 description 1
  • decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
  • defoamer Substances 0.000 description 1
  • design Methods 0.000 description 1
  • development Methods 0.000 description 1
  • diluting agent Substances 0.000 description 1
  • distribution Methods 0.000 description 1
  • dye Substances 0.000 description 1
  • effects Effects 0.000 description 1
  • electrical insulation Methods 0.000 description 1
  • fabric Substances 0.000 description 1
  • favourable effect Effects 0.000 description 1
  • filler Substances 0.000 description 1
  • flame retardant Substances 0.000 description 1
  • glass Substances 0.000 description 1
  • heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
  • heterocyclic group Chemical group 0.000 description 1
  • hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
  • hydroxy group Chemical group [H]O* 0.000 description 1
  • imidazoles Chemical class 0.000 description 1
  • integration Effects 0.000 description 1
  • isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
  • isocyanate Substances 0.000 description 1
  • isocyanates Chemical class 0.000 description 1
  • isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
  • isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
  • ketimines Chemical class 0.000 description 1
  • measurement method Methods 0.000 description 1
  • mechanism Effects 0.000 description 1
  • metal Inorganic materials 0.000 description 1
  • metal Substances 0.000 description 1
  • mixing Methods 0.000 description 1
  • monocyclic group Chemical group 0.000 description 1
  • n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
  • n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
  • n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
  • neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
  • nonwoven fabric Substances 0.000 description 1
  • nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
  • octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
  • overheating Methods 0.000 description 1
  • pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
  • pentyl group Chemical group C(CCCC)* 0.000 description 1
  • phenolic resin Substances 0.000 description 1
  • phenolic resin Polymers 0.000 description 1
  • phenols Chemical class 0.000 description 1
  • phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
  • phosphorus Inorganic materials 0.000 description 1
  • phosphorus Substances 0.000 description 1
  • pigment Substances 0.000 description 1
  • polyamide Polymers 0.000 description 1
  • polyamine Polymers 0.000 description 1
  • polymerization reaction Methods 0.000 description 1
  • polyphenolic compounds Chemical class 0.000 description 1
  • polyphenols Nutrition 0.000 description 1
  • processing Methods 0.000 description 1
  • processing method Methods 0.000 description 1
  • reaction time Effects 0.000 description 1
  • reinforcing fiber Substances 0.000 description 1
  • rheometry Methods 0.000 description 1
  • saturated elastomer Polymers 0.000 description 1
  • sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
  • sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
  • solution Substances 0.000 description 1
  • stirring Methods 0.000 description 1
  • substrate Substances 0.000 description 1
  • tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
  • tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
  • tertiary amines Chemical class 0.000 description 1
  • thermomechanical effect Effects 0.000 description 1
  • thixotropic agent Substances 0.000 description 1
  • transfer moulding Methods 0.000 description 1
  • wetting Methods 0.000 description 1

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/Nitrogen containing compounds
    • C08G59/Ureas; Thioureas; Guanidines; Dicyandiamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to the use of bis- or multifunctional N, N '- (dimethyl) -units as curing agents for the controlled curing of epoxy resin compositions, a process for the controlled curing of epoxy resin compositions and epoxy resin compositions comprising bis- or multifunctional N , N '- (dimethyl) -Urone for the production of moldings.
  • thermosetting epoxy resins are widely used because of their good chemical resistance, their very good thermal and dynamic mechanical properties and their high electrical insulation capacity.
  • epoxy resins show good adhesion on many substrates and are thus ideally suited for use in fiber composites.
  • infusion or injection methods for the production of molded parts made of fiber composite materials, various methods are used, such as, for example, the prepreg method, various infusion or injection methods, in particular the RTM method (Resin Transfer Molding).
  • RTM method Resin Transfer Molding
  • infusion or injection methods in particular have become more important in recent years.
  • infusion process where in an open tool covered dry reinforcing materials, such as fiber mats, nonwovens, woven or knitted fabric, covered with a dense vacuum film and soaked after application of the vacuum via distribution channels with resin formulations.
  • the curing of epoxy resins proceeds according to different mechanisms.
  • hardening with amines is often carried out. These substances are usually liquid and mix very well with epoxy resins. Due to the high reactivity and thus very low latency of such epoxy resin compositions are carried out in two parts. This means that the resin (A component) and hardener (B component) are stored separately and are mixed in the correct ratio just before use. In this case, “latent” means that a mixture of the individual components is stable under defined storage conditions.
  • These two-component resin formulations are also referred to as so-called cold-curing resin formulations, wherein the hardeners used for this are usually selected from the group of amines or amidoamines.
  • thermosetting epoxy resin formulations are ready to use ready-made, that is, that epoxy resin and hardener are factory mixed. Mixing errors of the individual components in use on site are therefore excluded. A prerequisite for this is formed by latent hardener systems which do not react with the epoxy resin at room temperature (can be stored), but readily react when heated, depending on the energy input.
  • latent hardener systems which do not react with the epoxy resin at room temperature (can be stored), but readily react when heated, depending on the energy input.
  • dicyandiamide is a particularly suitable and also cost-effective hardener. Under ambient conditions, appropriate resin-hardener mixtures can be stored for up to 12 months.
  • Urons have long been known as curing accelerators for accelerated curing of epoxy resins. So these are the Urones in a variety of Applications used in combination with latent hardeners such as dicyandiamide. Thus, the use of dicyandiamide as a latent curing agent in combination with a variety of Uronen as a cure accelerator is also described in a variety of patent applications. In this context, reference is made, for example, to the following documents EP A1 . EP A2 . US 2,993,044 A . US 3,386,956 A . US 3,789,071 . EP A1 . WO / A1 . WO / A1 ,
  • epoxy resin blends containing high latent dicyandiamide or other highly latent hardeners suffer from the disadvantage that these epoxy resin blends react very rapidly and with high heat release, i. with the release of high amounts of energy, harden. This effect is all the more evident when dicyandiamide and a curing accelerator, such as a uron, are used to cure epoxy resin mixtures.
  • dicyandiamide and a curing accelerator such as a uron
  • a uniform hardening over a given period of time is to be made possible, without causing any residual stresses or other thermal damage in the molded or component parts to be produced.
  • the maximum heat flow is measured in particular isothermally using a heat flow differential calorimeter (DSC822e, Mettler Toledo) and the peak maximum determined as the maximum heat flow. Adhering test conditions are listed in the examples.
  • a method for fast but gentle hardening solid components in which the heat flow through the selection of certain Urone used as the sole hardener on the component to be cured is adjusted. This makes it possible, on the one hand, to ensure that irregular components are hardened as evenly as possible and thus stress-free.
  • the curing rate can be optimized so that the manufacturing process as quickly as possible, but without thermal damage to the component takes place.
  • the use of N, N '- (dimethyl) -unuces of the general formula (I) as a hardener for the controlled curing of epoxy resin compositions or a process for curing epoxy resin compositions using N, N '- (Dimethyl) -Urons of the general formula (I) as hardener object of the present invention in which the epoxy resin composition has a layer thickness of at least 0.5 mm, in particular at least 2 mm, in particular at least 4 mm, in particular at least 10 mm, in particular at least 20 mm, particularly preferably at least 50 mm and very particularly preferably of at least 100 mm.
  • the layer thickness can be at most mm, in particular at most 500 mm.
  • Aromatic urons have a high reactivity, in which the heat produced in the exothermic reaction is released in a short time unit (high maximum heat flow). On the other hand, aliphatic urons have a significantly lower reactivity at which the amount of heat produced is released over a long period of time (lower maximum heat flow).
  • a bis- or multifunctional N, N '- (dimethyl) urone is to be understood as meaning a substance which has the structure represented by formula (I).
  • the functionality is determined solely by the number of dimethylurea substituents or radicals.
  • a dimethylurea substituent or radical is to be understood as meaning a radical or substituent according to formula (NH-CO-N (CH 3 ) 2 ).
  • N, N '- (dimethyl) -Uronen of the formula (I) are used according to the invention, in which R is a linear or branched aliphatic radical.
  • R is a linear or branched aliphatic radical.
  • Such compounds have a low reactivity, so that the amount of heat generated is released over a long period of time (low maximum heat flow).
  • the radical R in compounds of the formula (I) may be a linear or branched aliphatic radical.
  • alkyl or this aliphatic radical is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl or decyl, where these alkyl radicals may furthermore preferably also be unbranched, mono-branched, multiply branched or alkyl-substituted ,
  • C 1 to C 5 alkyl may be methyl, ethyl, n-propyl, 1-methylethyl, n-butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, n-pentyl, 1-methylbutyl, 2 Methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl or 1-ethylpropyl.
  • an alkyl radical in particular methyl, ethyl, propyl, butyl, in turn, in particular multiply, may also be substituted by a C3- to C15-cycloalkyl radical, where C3- to C15-cycloalkyl has the meaning given below.
  • N, N '- (dimethyl) -urones of the general formula (I) in which R comprises a cycloaliphatic radical preference is given to using N, N '- (dimethyl) -urones of the general formula (I) in which R comprises a cycloaliphatic radical.
  • the radical R in compounds of the formula (I) can also be a cycloaliphatic radical.
  • the cycloaliphatic radical has 3-20 carbon atoms.
  • a cycloaliphatic radical may in particular be C3 to C20, preferably C3 to C15 cycloalkyl.
  • R can furthermore preferably be a monocyclic or bicyclic cycloalkyl radical having 3 to 15 carbon atoms.
  • C 3 -C 15 -cycloalkyl may preferably be cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl, where these cycloalkyl radicals may in turn be further preferably monosubstituted or polysubstituted by C 1 - to C 5 -alkyl radicals of the meaning given above.
  • aromatic urons have a high reactivity, so that the resulting amount of heat is released over a short period of time (high maximum heat flow).
  • radical R in compounds of the formula (I) may also be an unsubstituted, halogen-substituted and / or alkyl-substituted aromatic radical.
  • Halogen may in particular mean fluorine, chlorine or bromine.
  • an unsubstituted, halogen-substituted and / or alkyl-substituted aromatic radical in particular having 1 to 4 cores, can be used.
  • Halogen is preferably fluorine, chlorine or bromine.
  • Alkyl is preferably C1 to C5 alkyl.
  • n a number from 2 to 20, ie that according to the invention compounds having from 2 to 20 dimethylurea radicals can be used.
  • N, N '- (dimethyl) urones of the general formula (I) selected from the group of bis [4- (N, N-dimethylurea) cyclohexyl] methanes (H12MDI-urone), 1, 1'-hexamethylene bis [3,3-dimethyl-urea] (HDI-Uron), N, N "-1,5-naphthalenediylbis [N ', N'-dimethyl-urea] (NDI-urone), 1,1' -m-xylylenebis (3,3-dimethylurea) (MXDI-urone), N, N "-1,4-phenylene to [N ', N'-dimethyl-urea] (PDI-urone), 4,4'-methylenediphenylenes bis (dimethylurea) (MDI-urone), 1- (N, N-dimethylurea) -3- (N, N-dimethyl
  • N, N '- (dimethyl) -urones of the general formula (I) are used as hardeners.
  • N, N '- (dimethyl) -urones of the general formula (I) can be used as sole hardeners in epoxy resin compositions. Accordingly, these epoxy resin compositions may be free of further curing agents, co-hardeners, curing accelerators and / or catalysts for curing epoxy resins.
  • the epoxy resin compositions may be free from such substances, ie in particular a content of ⁇ 1% by weight, more preferably ⁇ 0.1% by weight, even more preferably ⁇ 0.001% by weight and even more preferably from 0 wt .-% of such compounds, based on the total weight of the epoxy resin composition include.
  • the entire epoxy resin composition comprises, in addition to the alkyl or dialkyl semicarbazones of the general formula (I), no further hardeners and / or co-hardeners.
  • the epoxy composition is free of further hardeners and / or co-hardeners.
  • Typical hardeners and / or co-hardeners are, for example, aliphatic, cycloaliphatic and aromatic amines, polyamines, amidoamines, polyamides, ketimines, mercaptans, isocyanates, anhydrides, carboxylic acids, polyphenols, amino resins and phenolic resins and also dicyandiamide.
  • free of further hardeners and / or co-hardeners means that the total system has a content of further compounds which can be regarded as hardeners and / or co-hardeners of less than 1% by weight, based on the total Epoxy resin composition, in particular less than 0.1 wt .-%, more preferably less than 0.01 wt .-% and particularly preferably from 0 wt .-%.
  • the epoxy resin composition according to the invention is free of curing accelerators and / or catalysts for curing epoxy resins.
  • Typical curing accelerators and / or catalysts for curing epoxy resins are, for example, tertiary amines, imidazoles, urones, compounds based on boron trifluoride, titanate compounds.
  • Free from further curing accelerators and / or catalysts for the curing of epoxy resins means in particular that the overall system has a content of other compounds that can be regarded as curing accelerators and / or catalysts for the curing of epoxy resins, of less than 1% by weight, based on the total epoxy resin composition, in particular less than 0.1% by weight, even more preferably less than 0.01% by weight and particularly preferably 0% by weight having.
  • the epoxy resin composition in addition to the alkyl or dialkyl semicarbazones of general formula (I) or mixtures thereof, the epoxy resin composition is free of further curing agents, co-curing agents, curing accelerators and catalysts for curing epoxy resins.
  • the epoxy resin composition preferably comprises no further hardeners, co-hardeners, curing accelerators or other catalysts for curing epoxy resins.
  • the epoxy resin composition comprises the hardener selected from the group consisting of the N, N '- (dimethyl) -urones of the general formula (I) or mixtures thereof in an amount which, during the curing, epoxy resin composition at a temperature of 60 to 180 ° C a maximum heat flow of 0.05 to 0.99 W / g (based on the Mass of the epoxy resin composition) in the epoxy resin composition so that the epoxy resin composition fully cures.
  • the present invention is not limited. There are in particular all commercially available products in question, which usually have more than one 1,2-epoxide group (oxirane) and thereby may be saturated or unsaturated, aliphatic, cycloaliphatic, aromatic or heterocyclic.
  • the epoxy resins may have substituents such as halogens, phosphorus and hydroxyl groups.
  • 2,2-bis (4-hydroxyphenyl) -propane bisphenol A
  • bisphenol F bromine-substituted derivative
  • glycidyl polyethers of 2,2-bis (4-hydroxyphenyl) methane bisphenol F
  • Glycidyl polyethers of novolaks as well as those based on aniline or substituted anilines, such as, for example, p-aminophenol or 4,4'-diaminodiphenylmethane
  • a preferred epoxy resin composition comprises as curable epoxy resin in particular at least one epoxy resin from the group of epoxy resins based on glycidyl polyether of 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), its bromine-substituted derivative (tetrabromobisphenol A), glycidyl polyether of 2,2-bis (4-hydroxyphenyl) methane (bisphenol F) and / or glycidyl polyethers of novolac resins.
  • the amount used of the hardener according to the invention may further preferably 0.01 to 15 parts of N, N '- (dimethyl) uron of formula (I) or mixtures thereof per 100 parts of resin, preferably 0.1 to 15 parts, preferably 1 to 15 Parts and most preferably 2 to 15 parts per 100 parts of resin can be adjusted. Preference is further given to amounts used in the per 100 parts of resin 1 to 12 parts, in particular 2 to 12 parts, more preferably 3 to 12 parts, more preferably 4 to 12 parts and most preferably 5 to 12 parts of N, N '- (dimethyl) -Uron according to formula (I) or mixtures thereof.
  • a combination of several hardeners according to the invention, in particular in the ratio given here, is also covered by this invention.
  • a maximum heat flow of 0.05 to 0.99 W / g (based on the mass of epoxy resin) in the epoxy resin composition can be produced so that the epoxy resin composition fully cured.
  • an epoxy resin composition may preferably comprise 0.01 to 10% by weight (based on the weight of the epoxy resin composition) of N, N '- (dimethyl) uron of formula (I) or mixtures thereof , Particular preference is given to epoxy resin compositions which contain at least 0.01% by weight, in particular at least 0.1% by weight, more preferably at least 1.0% by weight and at the same time at most 10% by weight, in particular not more than 8% by weight %, more preferably at most 7% by weight of N, N '- (dimethyl) uron of formula (I) or mixtures thereof.
  • the epoxy resin composition comprises the N, N '- (dimethyl) uron of general formula (I) or mixtures thereof in an amount comprises, during the curing at a temperature of 60 to 180 ° C, in particular from 60 to 160 ° C and most preferably from 60 to 150 ° C, a maximum heat flow of 0.05 to 0.99 W / g (based on the bulk of the epoxy resin composition) in the epoxy resin composition so that the epoxy resin composition fully cures.
  • the epoxy resin composition comprises the N, N '- (dimethyl) uron of general formula (I) or mixtures thereof in an amount which, during cure, is at a temperature of 80 to 160 ° C , in particular from 90 to 160 ° C and most preferably from 100 to 160 ° C, a maximum heat flow of 0.05 to 0.99 W / g (based on the mass of the epoxy resin composition) produced in the epoxy resin composition so that the epoxy resin composition cures completely.
  • the amount of N, N '- (dimethyl) -units of the general formula (I) or mixtures thereof has a maximum heat flow of 0.05 to 0.99 W / g, in particular 0.05 to 0.80 W / g, more preferably 0.05 to 0.70 W / g and most preferably 0.05 to 0.60 W / g (based on the mass of the epoxy resin composition) produced in the epoxy resin composition so that the epoxy resin composition cures completely.
  • the epoxy resin composition cures completely.
  • the epoxy resin composition hardens to ⁇ 80%, preferably to ⁇ 90%, more preferably to ⁇ 95%, even more preferably to ⁇ 98%, in particular to ⁇ 99% and most preferably to 100%.
  • the epoxy groups in the cured epoxy resin composition have in particular ⁇ 80%, preferably ⁇ 90%, more preferably ⁇ 95%, even more preferably ⁇ 98%, more preferably ⁇ 99%, and most preferably ⁇ 100 % reacts.
  • the proportion of unreacted epoxy groups in the cured epoxy resin composition is in particular ⁇ 20%, preferably ⁇ 10%, more preferably ⁇ 5%, even more preferably ⁇ 2%, in particular ⁇ 1% and most preferably 0%.
  • additives for improving the processability of the uncured epoxy resin compositions or for adapting the thermo-mechanical properties of the thermoset products to the requirement profile include, for example, reactive diluents, fillers, rheology additives, such as thixotropic agents or dispersing additives, Defoamer, dyes, pigments, tougheners, impact modifiers or fire retardant additives.
  • Epoxy resin formulations containing the hardeners according to the invention are suitable both for manual and mechanical processing methods and, in particular, for the production of impregnated reinforcing fibers and composites, as described, inter alia, in the specifications of GW Ehrenstein, Faserverbund-Kunstscher, , 2nd edition, Carl Hanser Verlag, Kunststoff, chapter 5, page 148ff , and M. Reyne, Composite Solutions, , JEC Publications, Chapter 5, page 51ff , are described.
  • the handling in infusion and injection methods is a preferred form of processing.
  • the generally very good miscibilities of the hardener according to the invention in the epoxy resins are advantageous.
  • epoxy resin compositions of the type described above for the production of moldings, in particular hollow bodies are also the subject of the present invention.
  • this use is directed to the production of molded parts, in particular hollow bodies, which have a layer thickness or wall of 4 to mm, in particular of at least 10 mm, preferably at least 50 mm and more preferably at least 100 mm, and in particular up to 500 mm.
  • a composite material or molded article is the subject of the present invention comprising a reinforcing and / or support material and an epoxy resin composition of the type described above.
  • reinforcing material in this case all conventional reinforcing materials can be used. In particular, however, are not conclusive: fibers made of glass, carbon, aramid and wood or natural fibers.
  • compositions 4.a. until 4.o. of Table 4 were used as described above for compositions 3.a. to 3.f. described, prepared.
  • Examples of particularly thick and / or unevenly thick molded parts or hollow bodies are z. B. in wind turbines the profile nose (> 4 mm to> 15 mm), in particular web and spars (> 25 mm) and in particular the blade root (> 10 mm to> 250 mm).
  • the suitable hardener of this invention it is possible the heat flow so to adjust that the residual stress of the cured molding or hollow body is as low as possible and it does not come during the curing process to a thermal damage and / or partial or complete charring.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)

Description

Die vorliegende Erfindung betrifft die Verwendung von bis- oder multifunktionalen N,N'-(Dimethyl)-Uronen als Härter zur kontrollierten Härtung von Epoxidharz-Zusammensetzungen, ein Verfahren zur kontrollierten Härtung von Epoxidharz-Zusammensetzungen sowie Epoxidharz-Zusammensetzungen umfassend bis- oder multifunktionale N,N'-(Dimethyl)-Urone zur Herstellung von Formteilen.The present invention relates to the use of bis- or multifunctional N, N '- (dimethyl) -units as curing agents for the controlled curing of epoxy resin compositions, a process for the controlled curing of epoxy resin compositions and epoxy resin compositions comprising bis- or multifunctional N , N '- (dimethyl) -Urone for the production of moldings.

Die Verwendung von duroplastischen Epoxidharzen ist aufgrund ihrer guten Chemikalienbeständigkeit, ihrer sehr guten thermischen und dynamischmechanischen Eigenschaften sowie ihres hohen elektrischen Isolationsvermögens weit verbreitet. Darüber hinaus zeigen Epoxidharze eine gute Haftung auf vielen Substraten und sind somit bestens für den Einsatz in Faserverbundwerkstoffen (Composites) geeignet. Für den Einsatz in Faserverbundwerkstoffen sind sowohl eine gute Benetzung der Faser, d. h. eine niedrige Viskosität der gewählten Harzformulierung zur Compositherstellung als auch hohe mechanische Eigenschaften wünschenswert.The use of thermosetting epoxy resins is widely used because of their good chemical resistance, their very good thermal and dynamic mechanical properties and their high electrical insulation capacity. In addition, epoxy resins show good adhesion on many substrates and are thus ideally suited for use in fiber composites. For use in fiber composites both good wetting of the fiber, d. H. a low viscosity of the selected resin formulation for compositing as well as high mechanical properties desirable.

Zur Herstellung von Formteilen aus Faserverbundwerkstoffen werden verschiedene Verfahren genutzt, wie beispielsweise das Prepregverfahren, verschiedene Infusions- oder Injektionsverfahren, hierbei insbesondere das RTM-Verfahren (Resin Transfer Molding). Von diesen Verfahren haben insbesondere die Infusions- oder Injektionsverfahren in den letzten Jahren an Bedeutung gewonnen. So werden beispielsweise in den Infusionsverfahren, bei denen in einem offenen Werkzeug befindliche trockene Verstärkungsmaterialien, wie beispielsweise Fasermatten, Vliesstoffe, Gewebe oder Gewirke, mit einer dichten Vakuumfolie abgedeckt und nach Anlegen des Vakuums über Verteilerkanäle mit Harzformulierungen getränkt. Diese Verfahren weisen den Vorteil auf, dass große Elemente mit komplizierten Geometrien in kurzer Zeit geformt werden können.For the production of molded parts made of fiber composite materials, various methods are used, such as, for example, the prepreg method, various infusion or injection methods, in particular the RTM method (Resin Transfer Molding). Of these methods, infusion or injection methods in particular have become more important in recent years. For example, in the infusion process, where in an open tool covered dry reinforcing materials, such as fiber mats, nonwovens, woven or knitted fabric, covered with a dense vacuum film and soaked after application of the vacuum via distribution channels with resin formulations. These methods have the advantage that large elements with complicated geometries can be formed in a short time.

Die Härtung von Epoxidharzen verläuft nach unterschiedlichen Mechanismen. Neben der Härtung mit Phenolen oder Anhydriden wird häufig die Härtung mit Aminen durchgeführt. Diese Stoffe sind meist flüssig und lassen sich sehr gut mit Epoxidharzen vermengen. Aufgrund der hohen Reaktivität und damit sehr niedrigen Latenz werden derartige Epoxidharz-Zusammensetzungen zweikomponentig ausgeführt. Dies bedeutet, dass Harz (A-Komponente) und Härter (B-Komponente) getrennt aufbewahrt werden und erst kurz vor Gebrauch im korrekten Verhältnis gemischt werden. Hierbei bedeutet "latent", dass eine Mischung der Einzelkomponenten unter definierten Lagerbedingungen stabil vorliegt. Diese zweikomponentigen Harzformulierungen werden auch als sogenannte kalthärtende Harzformulierungen bezeichnet, wobei die dafür verwendeten Härter meist aus der Gruppe der Amine oder Amidoamine gewählt werden.The curing of epoxy resins proceeds according to different mechanisms. In addition to curing with phenols or anhydrides, hardening with amines is often carried out. These substances are usually liquid and mix very well with epoxy resins. Due to the high reactivity and thus very low latency of such epoxy resin compositions are carried out in two parts. This means that the resin (A component) and hardener (B component) are stored separately and are mixed in the correct ratio just before use. In this case, "latent" means that a mixture of the individual components is stable under defined storage conditions. These two-component resin formulations are also referred to as so-called cold-curing resin formulations, wherein the hardeners used for this are usually selected from the group of amines or amidoamines.

Einkomponentige, heißhärtende Epoxidharzformulierungen sind hingegen gebrauchsfähig fertig vorkonfektioniert, das heißt, dass Epoxidharz und Härter werkseitig vermischt vorliegen. Mischungsfehler der Einzelkomponenten bei Gebrauch vor Ort sind daher ausgeschlossen. Voraussetzung dafür bilden latente Härtersysteme, welche bei Raumtemperatur mit dem Epoxidharz nicht reagieren (lagerfähig sind), jedoch unter Erwärmung je nach Energieeintrag bereitwillig ausreagieren. Für solche einkomponentigen Epoxidharz-Formulierungen ist beispielsweise Dicyandiamid ein besonders geeigneter und auch kostengünstiger Härter. Unter Umgebungsbedingungen können entsprechende Harz-Härter-Mischungen bis zu 12 Monaten gebrauchsfähig gelagert werden.One-component, thermosetting epoxy resin formulations, however, are ready to use ready-made, that is, that epoxy resin and hardener are factory mixed. Mixing errors of the individual components in use on site are therefore excluded. A prerequisite for this is formed by latent hardener systems which do not react with the epoxy resin at room temperature (can be stored), but readily react when heated, depending on the energy input. For such one-component epoxy resin formulations, for example, dicyandiamide is a particularly suitable and also cost-effective hardener. Under ambient conditions, appropriate resin-hardener mixtures can be stored for up to 12 months.

Urone sind seit langer Zeit als Härtungsbeschleuniger zur beschleunigten Härtung von Epoxidharzen bekannt. So werden diese Urone in einer Vielzahl von Anwendungen in Kombination mit latenten Härtern wie beispielsweise Dicyandiamid eingesetzt. So wird die Verwendung von Dicyandiamid als latenter Härter in Kombination mit verschiedensten Uronen als Härtungsbeschleuniger auch in einer Vielzahl an Patentanmeldungen beschrieben. In diesem Zusammenhang sei beispielsweise auf die folgenden Dokumente verwiesen EP A1 , EP A2 , US 2,993,044 A , US 3,386,956 A , US 3,789,071 , EP A1 , WO / A1 , WO / A1 .Urons have long been known as curing accelerators for accelerated curing of epoxy resins. So these are the Urones in a variety of Applications used in combination with latent hardeners such as dicyandiamide. Thus, the use of dicyandiamide as a latent curing agent in combination with a variety of Uronen as a cure accelerator is also described in a variety of patent applications. In this context, reference is made, for example, to the following documents EP A1 . EP A2 . US 2,993,044 A . US 3,386,956 A . US 3,789,071 . EP A1 . WO / A1 . WO / A1 ,

Leider weisen Epoxidharzmischungen mit hoch latentem Dicyandiamid oder anderen hoch latenten Härtern den Nachteil auf, dass diese Epoxidharzmischungen sehr schnell und mit hohem Wärmeaustrag, d.h. unter Freisetzung von hohen Energiemengen, aushärten. Dieser Effekt ist umso deutlicher, wenn zur Härtung von Epoxidharzmischungen Dicyandiamid und ein Härtungsbeschleuniger, wie beispielsweise ein Uron eingesetzt wird. Diese Tatsache stellt für die mit der Konstruktion und Herstellung von Formteilen befassten Fachleute ein erhebliches Problem dar, da mit der freiwerdenden Energie die Formkörper je nach Schichtdicke Eigenspannungen erhalten. Diese Eigenspannungen führen zu Rissen in den Formteilen, wodurch die Formteile die geforderte mechanische Stabilität nicht erreichen. Sollte der Wärmeaustrag in Abhängigkeit der Schichtdicke viel zu hoch sein, so sind in Einzelfällen sogar Verkohlungen zu beobachten, wodurch die Formkörper gänzlich unbrauchbar werden.Unfortunately, epoxy resin blends containing high latent dicyandiamide or other highly latent hardeners suffer from the disadvantage that these epoxy resin blends react very rapidly and with high heat release, i. with the release of high amounts of energy, harden. This effect is all the more evident when dicyandiamide and a curing accelerator, such as a uron, are used to cure epoxy resin mixtures. This fact poses a considerable problem for those involved in the design and manufacture of molded parts, since the shaped bodies, depending on the layer thickness, receive residual stresses with the energy released. These residual stresses lead to cracks in the moldings, whereby the moldings do not achieve the required mechanical stability. Should the heat emission be much too high depending on the layer thickness, then in some cases even charring can be observed, as a result of which the shaped bodies become completely unusable.

Die Anwendung von Composite-Bauteilen als Ersatz von Metall- bzw. Holzbauteilen, wie zum Beispiel in Windkraftanlagen, wird zunehmend relevanter. So planen z. B. die Hersteller von Windkaftanlagen immer größere Aggregate, die von größeren Rotorblätter angetrieben werden. Bei der Herstellung dieser Rotorblätter muss die im Herstellungsprozess entstehende Wärme möglichst effektiv und gleichmäßig abgeführt werden, damit das Bauteil während dem Herstellungsprozess nicht thermisch geschädigt wird. Dies kann bei Verwendung von Epoxidharz-Zusammensetzungen die als Härtungssystem Dicyandiamid als Härter und Urone als Härtungsbeschleuniger umfassen nur unzureichend gewährleistet werden, da diese Systeme sehr schnell reagieren und große Wärmemengen innerhalb von kürzester Zeit abgeben. Durch die Härtung bei niedrigeren Temperaturen kann zwar die Reaktionsgeschwindigkeit in gewissen Bereichen gesteuert werden; allerdings wird in großen und massiven Bauteilen mit großen Schichtdicken an Epoxidharzen, wie beispielsweise Rotorblätter, sehr schnell ein Wärmestau durch ungenügende Wärmeabführung beobachtet. Daraus resultiert, dass sich die Härtungsreaktion unkontrolliert beschleunigt. Letztendlich resultiert hieraus eine thermische Schädigung im Bauteil.The use of composite components to replace metal or wood components, such as in wind turbines, is becoming increasingly relevant. To plan z. As the manufacturer of wind power plants larger and larger units that are driven by larger rotor blades. During the production of these rotor blades, the heat generated in the manufacturing process must be dissipated as effectively and uniformly as possible, so that the component is not thermally damaged during the manufacturing process. This can not be adequately ensured when using epoxy resin compositions which comprise the hardening system dicyandiamide as curing agent and urones as curing accelerator, since these systems react very quickly and absorb large amounts of heat within deliver in no time. By curing at lower temperatures, although the reaction rate can be controlled in certain areas; However, in large and massive components with large layer thicknesses of epoxy resins, such as rotor blades, a heat accumulation is observed very quickly due to insufficient heat dissipation. As a result, the curing reaction accelerates uncontrollably. Ultimately, this results in thermal damage in the component.

Zur spannungsfreien Herstellung von großen und massiven Strukturbauteilen müssen diese möglichst gleichmäßig und damit auch langsamer gehärtet werden. Mit den üblichen Härtungssystemen aus Uronen als Beschleuniger und Dicyandiamid als Härter ist dies nur bedingt realisierbar, da es durch ungleichmäßige Wärmeabführung zu lokalen Wärmestaus und damit zu einer ungleichmäßigen Härtung kommen kann. Diese Gefahr ist besonders bei unregelmäßigen Bauteilen gegeben.For tension-free production of large and solid structural components, they must be hardened as uniformly as possible and thus also more slowly. With the usual hardening systems of Uronen as accelerator and dicyandiamide as hardener, this is only partially feasible, since it can come to uneven heat dissipation due to uneven heat dissipation and thus to a non-uniform. This danger is especially given with irregular components.

Daher liegt der vorliegenden Erfindung die Aufgabe zugrunde ein Verfahren zur kontrollierten Härtung von Epoxidharz-Zusammensetzungen, insbesondere für massive Bauteile mit großen Schichtdicken an Epoxidharz, sowie die hierfür benötigten Epoxidharz-Zusammensetzungen bereitzustellen. Durch dieses Verfahren soll ein gleichmäßiges Härten über einen gegebenen Zeitraum ermöglicht werden, ohne das in dem herzustellenden Form- oder Bauteilen Eigenspannungen oder sonstigen thermischen Schädigungen erfolgen.It is therefore an object of the present invention to provide a process for the controlled curing of epoxy resin compositions, in particular for solid components having large layer thicknesses of epoxy resin, and the epoxy resin compositions required for this purpose. By this method, a uniform hardening over a given period of time is to be made possible, without causing any residual stresses or other thermal damage in the molded or component parts to be produced.

Diese Aufgaben werden gelöst durch ein Verfahren und Verwendung gemäß Anspruch 1 und 2 der vorliegenden Erfindung.These objects are achieved by a method and use according to claims 1 and 2 of the present invention.

Damit ist gemäß einer ersten Ausführung die Verwendung von bis- oder multifunktionalen N,N'-(Dimethyl)-Uronen der allgemeinen Formel (I) oder Mischungen hiervon, als Härter zur kontrollierten Härtung von Epoxidharz-Zusammensetzungen Gegenstand der vorliegenden Erfindung, mit

        R - (NH-CO-N(CH3)2)n     Formel (I)

wobei

  • R = ein linearer oder verzweigter aliphatischer Rest, oder ein nichtsubstituierter, halogensubstituierter und/oder alkylsubstituierter aromatischer Rest, und
  • n = eine Zahl von 2 bis 20 bedeutet,
wobei die Epoxidharz-Zusammensetzung mindestens ein härtbares Epoxidharz umfasst, und wobei die Epoxidharz-Zusammensetzung das N,N'-(Dimethyl)-Uron der allgemeinen Formel (I) oder Mischungen hiervon in einer Menge umfasst, die während der Härtung bei einer Temperatur von 60 bis 180 °C einen maximalen Wärmestrom von 0,05 bis 0,99 W/ g (bezogen auf die Masse der Epoxidharz-Zusammensetzung) in der Epoxidharz-Zusammensetzung erzeugt, so dass die Epoxidharz-Zusammensetzung vollständig aushärtet. Vorzugsweise umfasst die Epoxidharz-Zusammensetzung neben dem N,N'-(Dimethyl)-Uron der allgemeinen Formel (I) oder Mischungen hiervon keine weiteren Härter, Co-Härter, Härtungsbeschleuniger oder anderer Katalysatoren zur Härtung von Epoxidharzen.Thus, according to a first embodiment, the use of bis- or multifunctional N, N '- (dimethyl) -Uronen of the general formula (I) or mixtures thereof, as a hardener for the controlled curing of epoxy resin compositions subject of the present invention, with

R - (NH-CO-N (CH 3 ) 2 ) n formula (I)

in which
  • R = a linear or branched aliphatic radical, or an unsubstituted, halogen-substituted and / or alkyl-substituted aromatic radical, and
  • n = a number from 2 to 20,
wherein the epoxy resin composition comprises at least one curable epoxy resin, and wherein the epoxy resin composition comprises the N, N '- (dimethyl) uron of general formula (I) or mixtures thereof in an amount which, during curing, is at a temperature of 60 to 180 ° C produces a maximum heat flux of 0.05 to 0.99 W / g (based on the mass of the epoxy resin composition) in the epoxy resin composition, so that the epoxy resin composition cures completely. Preferably, in addition to the N, N '- (dimethyl) uron of general formula (I) or mixtures thereof, the epoxy resin composition comprises no further hardeners, co-hardeners, curing accelerators or other catalysts for curing epoxy resins.

Gemäß einer zweiten Ausführung ist damit auch ein Verfahren zur kontrollierten Härtung von Epoxidharz-Zusammensetzungen sowie ein Verfahren zur Herstellung von Composites, mittels mindestens einem bis- oder multifunktionalem N,N'-(Dimethyl)-Uron der allgemeinen Formel (I) oder Mischungen hiervon als Härter, Gegenstand der vorliegenden Erfindung, mit

        R - (NH-CO-N(CH3)2)n     Formel (I)

wobei

  • R = ein linearer oder verzweigter aliphatischer Rest, oder
    ein cycloaliphatischer Rest, oder
    ein nichtsubstituierter, halogensubstituierter und/oder alkylsubstituierter aromatischer Rest, und
  • n = eine Zahl von 2 bis 20 bedeutet,
wobei die Epoxidharz-Zusammensetzung mindestens ein härtbares Epoxidharz umfasst, und wobei die Epoxidharz-Zusammensetzung das N,N'-(Dimethyl)-Uron der allgemeinen Formel (I) oder Mischungen hiervon in einer Menge umfasst, die während der Härtung bei einer Temperatur von 60 bis 180 °C einen maximalen Wärmestrom von 0,05 bis 0,99 W/ g (bezogen auf die Masse der Epoxidharz-Zusammensetzung) in der Epoxidharz-Zusammensetzung erzeugt, so dass die Epoxidharz-Zusammensetzung vollständig aushärtet. Vorzugsweise umfasst die Epoxidharz-Zusammensetzung neben dem N,N'-(Dimethyl)-Uron der allgemeinen Formel (I) oder Mischungen hiervon keine weiteren Härter, Co-Härter, Härtungsbeschleuniger oder anderer Katalysatoren zur Härtung von Epoxidharzen.According to a second embodiment is thus also a method for controlled curing of epoxy resin compositions and a method for producing composites, by means of at least one bis- or multifunctional N, N '- (dimethyl) uron of the general formula (I) or mixtures thereof as a hardener, object of the present invention, with

R - (NH-CO-N (CH 3 ) 2 ) n formula (I)

in which
  • R = a linear or branched aliphatic radical, or
    a cycloaliphatic radical, or
    an unsubstituted, halogen-substituted and / or alkyl-substituted aromatic radical, and
  • n = a number from 2 to 20,
wherein the epoxy resin composition comprises at least one curable epoxy resin, and wherein the epoxy resin composition comprises the N, N '- (dimethyl) uron of general formula (I) or mixtures thereof in an amount which, during curing, is at a temperature of 60 to 180 ° C produces a maximum heat flux of 0.05 to 0.99 W / g (based on the mass of the epoxy resin composition) in the epoxy resin composition, so that the epoxy resin composition cures completely. Preferably, in addition to the N, N '- (dimethyl) uron of general formula (I) or mixtures thereof, the epoxy resin composition comprises no further hardeners, co-hardeners, curing accelerators or other catalysts for curing epoxy resins.

Gemäß einer alternativen Ausführung ist auch die Verwendung von bis- oder multifunktionalem N,N'-(Dimethyl)-Uron der allgemeinen Formel (I) oder Mischungen hiervon als Härter zur kontrollierten Härtung von Epoxidharz-Zusammensetzungen, sowie ein Verfahren zur kontrollierten Härtung von Epoxidharz-Zusammensetzungen mittels mindestens einem bis- oder multifunktionalem N,N'-(Dimethyl)-Uron der allgemeinen Formel (I) oder Mischungen hiervon als Härter, sowie ein Verfahren zur Herstellung von Composites mittels mindestens einem bis- oder multifunktionalem N,N'-(Dimethyl)-Uron der allgemeinen Formel (I) oder Mischungen hiervon als Härter, Gegenstand der vorliegenden Erfindung, mit

        R - (NH-CO-N(CH3)2)n     Formel (I)

wobei

  • R = ein linearer oder verzweigter aliphatischer Rest, oder
    ein cycloaliphatischer Rest, oder
    ein nichtsubstituierter, halogensubstituierter und/oder alkylsubstituierter aromatischer Rest, und
  • n = eine Zahl von 2 bis 20 bedeutet,
wobei die Epoxidharz-Zusammensetzung mindestens ein härtbares Epoxidharz und neben dem N,N'-(Dimethyl)-Uron der allgemeinen Formel (I) oder Mischungen hiervon keine weiteren Härter, Co-Härter, Härtungsbeschleuniger oder anderer Katalysatoren zur Härtung von Epoxidharzen umfasst. Vorzugsweise umfasst die Epoxidharz-Zusammensetzung das N,N'-(Dimethyl)-Uron der allgemeinen Formel (I) oder Mischungen hiervon in einer Menge, dass die Epoxidharz-Zusammensetzung vollständig aushärtet, und besonders bevorzugt in einer Menge, die während der Härtung bei einer Temperatur von 60 bis 180 °C einen maximalen Wärmestrom von 0,05 bis 0,99 W/ g (bezogen auf die Masse der Epoxidharz-Zusammensetzung) in der Epoxidharz-Zusammensetzung erzeugt, so dass die Epoxidharz-Zusammensetzung vollständig aushärtet.According to an alternative embodiment, the use of bis- or multifunctional N, N '- (dimethyl) -uron of the general formula (I) or mixtures thereof as a hardener for the controlled curing of epoxy resin compositions, as well as a method for the controlled curing of epoxy resin Compositions by means of at least one bis- or multifunctional N, N '- (dimethyl) uron of the general formula (I) or mixtures thereof as hardener, and a process for the preparation of composites by means of at least one bis- or multifunctional N, N'- (Dimethyl) uron of the general formula (I) or mixtures thereof as a curing agent, the subject of the present invention, with

R - (NH-CO-N (CH 3 ) 2 ) n formula (I)

in which
  • R = a linear or branched aliphatic radical, or
    a cycloaliphatic radical, or
    an unsubstituted, halogen-substituted and / or alkyl-substituted aromatic radical, and
  • n = a number from 2 to 20,
wherein the epoxy resin composition at least one curable epoxy resin and in addition to the N, N '- (dimethyl) uron of the general formula (I) or mixtures thereof, no further hardener, co-curing agent, curing accelerator or other Catalysts for the curing of epoxy resins. Preferably, the epoxy resin composition comprises the N, N '- (dimethyl) uron of general formula (I) or mixtures thereof in an amount that completely cures the epoxy resin composition, and more preferably in an amount that is added during curing a temperature of 60 to 180 ° C produces a maximum heat flow of 0.05 to 0.99 W / g (based on the mass of the epoxy resin composition) in the epoxy resin composition, so that the epoxy resin composition cures completely.

Überraschender Weise hat sich herausgestellt, dass durch die Verwendung von N,N'-(Dimethyl)-Uron der allgemeinen Formel (I) oder Mischungen hiervon, insbesondere als alleinige Härter, und der gezielten Einstellung eines maximalen Wärmestroms von 0,05 bis 0,99 W/ g nun erstmals ein Verfahren bereitgestellt werden kann, das eine besonders spannungsarme Härtung von Epoxidharz-Zusammensetzungen ermöglicht. In den somit unter Verwendung dieser Urone hergestellten Formteilen sind keinerlei Risse oder sonstige thermische Schädigungen festzustellen. Die Härtung erfolgt hierbei über einen gegebenen Zeitraum besonders gleichmäßig, wodurch keine lokalen Überhitzungen oder Wärmestaus beobachtet werden. Zudem war nicht vorherzusehen, dass die Härtung vollständig erfolgt, d. h. dass eine vollständige Polymerisation der Epoxidharze erfolgt, so dass die Epoxidharze vollständig aushärten. Somit kann auch ein Verfahren zur Herstellung von Formteilen bereit bereitgestellt werden, das in Bezug auf die herzustellenden Formteile einen hohen Qualitätsstandart sichert.Surprisingly, it has been found that by the use of N, N '- (dimethyl) uron of the general formula (I) or mixtures thereof, in particular as the sole hardener, and the targeted adjustment of a maximum heat flow from 0.05 to 0, 99 W / g now a method can be provided for the first time, which allows a particularly low-stress curing of epoxy resin compositions. In the thus produced using this Urone moldings no cracks or other thermal damage are observed. Curing takes place particularly uniformly over a given period of time, as a result of which no local overheating or heat build-up is observed. In addition, it was not foreseen that the curing was complete, d. H. that a complete polymerization of the epoxy resins takes place, so that the epoxy resins cure completely. Thus, a method for the production of molded parts can be provided ready, which ensures a high quality standard with respect to the molded parts to be produced.

Der maximale Wärmestrom wird erfindungsgemäß insbesondere isotherm mit einem Wärmestrom-Differenzkalorimeter (DSC822e, Mettler Toledo) gemessen und das Peak-Maximum als maximaler Wärmestrom bestimmt. Einzuhaltende Prüfungsbedingungen sind in den Beispielen aufgeführt.According to the invention, the maximum heat flow is measured in particular isothermally using a heat flow differential calorimeter (DSC822e, Mettler Toledo) and the peak maximum determined as the maximum heat flow. Adhering test conditions are listed in the examples.

So kann auch ein Verfahren zur schnellen aber schonenden Härtung massiver Bauteile bereit gestellt werden, in dem der Wärmestrom über die Auswahl bestimmter Urone als alleinige Härter eingesetzt auf das zu härtende Bauteil angepasst wird. Damit wird einerseits ermöglicht, dass unregelmäßige Bauteile möglichst gleichmäßig und damit spannungsfrei gehärtet werden. Andererseits kann die Härtungsgeschwindigkeit so optimiert werden, dass der Herstellungsprozess möglichst schnell, aber ohne thermische Beschädigung des Bauteils erfolgt.Thus, a method for fast but gentle hardening solid components can be provided, in which the heat flow through the selection of certain Urone used as the sole hardener on the component to be cured is adjusted. This makes it possible, on the one hand, to ensure that irregular components are hardened as evenly as possible and thus stress-free. On the other hand, the curing rate can be optimized so that the manufacturing process as quickly as possible, but without thermal damage to the component takes place.

Damit ist gemäß einer besonderen Ausführung auch die Verwendung von N,N'-(Dimethyl)-Uronen der allgemeinen Formel (I) als Härter zur kontrollierten Härtung von Epoxidharz-Zusammensetzungen oder ein Verfahren zur Härtung von Epoxidharz-Zusammensetzungen unter Verwendung von N,N'-(Dimethyl)-Uronen der allgemeinen Formel (I) als Härter Gegenstand der vorliegenden Erfindung, in denen die Epoxidharz-Zusammensetzung eine Schichtdicke von mindestens 0,5 mm, insbesondere mindestens 2 mm, insbesondere mindestens 4 mm, insbesondere mindestens 10 mm, insbesondere mindestens 20 mm, besonders bevorzugt mindestens 50 mm und ganz besonders bevorzugt von mindestens 100 mm aufweist. Gleichzeitig oder unabhängig hiervon kann die Schichtdicke höchstens mm, insbesondere höchstens 500 mm betragen.Thus, according to a particular embodiment, the use of N, N '- (dimethyl) -unuces of the general formula (I) as a hardener for the controlled curing of epoxy resin compositions or a process for curing epoxy resin compositions using N, N '- (Dimethyl) -Urons of the general formula (I) as hardener object of the present invention, in which the epoxy resin composition has a layer thickness of at least 0.5 mm, in particular at least 2 mm, in particular at least 4 mm, in particular at least 10 mm, in particular at least 20 mm, particularly preferably at least 50 mm and very particularly preferably of at least 100 mm. At the same time or independently thereof, the layer thickness can be at most mm, in particular at most 500 mm.

Die Auswahl des geeigneten Urons für eine Formulierung erfolgt nach der gewünschten Härtungsgeschwindigkeit, der gewünschten Härtungstemperatur und/oder der Möglichkeit die entstehende Reaktionswärme möglichst gleichmäßig abzuführen. Aromatische Urone besitzen eine hohe Reaktivität, bei der in der exothermen Reaktion die entstehende Wärmemenge in einer kurzen Zeiteinheit abgegeben wird (hoher maximaler Wärmestrom). Aliphatische Urone besitzen dagegen eine deutlich niedrigere Reaktivität, bei der die entstehende Wärmemenge über einen großen Zeitraum abgegeben wird (niedriger maximaler Wärmestrom).The selection of the appropriate uron for a formulation is carried out according to the desired curing rate, the desired curing temperature and / or the ability to dissipate the resulting heat of reaction as evenly as possible. Aromatic urons have a high reactivity, in which the heat produced in the exothermic reaction is released in a short time unit (high maximum heat flow). On the other hand, aliphatic urons have a significantly lower reactivity at which the amount of heat produced is released over a long period of time (lower maximum heat flow).

Im Zusammenhang mit der vorliegenden Erfindung ist dabei unter einem bis- oder multifunktionalen N,N'-(Dimethyl)Uron eine Substanz zu verstehen, die die mit Formel (I) wiedergegebene Struktur aufweist. Hierbei wird die Funktionalität alleine durch die Anzahl der Dimethylharnstoff-Substituenten bzw. -Reste bestimmt. Weiterhin soll im Folgenden unter einem Dimethylharnstoff -Substituent oder -Rest ein Rest oder Substituent gemäß Formel -(NH-CO-N(CH3)2) verstanden sein.In the context of the present invention, a bis- or multifunctional N, N '- (dimethyl) urone is to be understood as meaning a substance which has the structure represented by formula (I). Here, the functionality is determined solely by the number of dimethylurea substituents or radicals. Furthermore, in the following, a dimethylurea substituent or radical is to be understood as meaning a radical or substituent according to formula (NH-CO-N (CH 3 ) 2 ).

In einer ersten bevorzugten Ausführungsform werden erfindungsgemäß N,N'-(Dimethyl)-Uronen der Formel (I) eingesetzt, in denen R ein linearer oder verzweigter aliphatischer Rest ist. Solche Verbindungen weisen eine niedrige Reaktivität auf, so dass die entstehende Wärmemenge über einen großen Zeitraum abgegeben wird (niedriger maximaler Wärmestrom).In a first preferred embodiment, N, N '- (dimethyl) -Uronen of the formula (I) are used according to the invention, in which R is a linear or branched aliphatic radical. Such compounds have a low reactivity, so that the amount of heat generated is released over a long period of time (low maximum heat flow).

Der Rest R in Verbindungen der Formel (I) kann ein linearer oder verzweigter aliphatischer Rest sein. Gemäß der vorliegenden Erfindung kann ein linearer oder verzweigter aliphatischer Rest ein linearer oder verzweigter Alkylrest mit einer Kettenlänge bis zu 20 Kohlenstoffatomen sein, insbesondere ein Alkylrest, der die allgemeine Formel CxH2x+2-n aufweist, wobei x = 1 bis 20, bevorzugt x = 1 bis 10, und n die Anzahl der Dimethylharnstoffsubstituenten mit n = eine ganze Zahl von 2 bis 20 bedeutet. Dabei ist weiterhin bevorzugt vorgesehen, dass Alkyl oder dieser aliphatische Rest Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl oder Decyl bedeutet, wobei diese Alkylreste weiterhin bevorzugt auch unverzweigt, einfach verzweigt, mehrfach verzweigt oder alkylsubstituiert sein können.The radical R in compounds of the formula (I) may be a linear or branched aliphatic radical. According to the present invention, a linear or branched aliphatic radical may be a linear or branched alkyl radical having a chain length of up to 20 carbon atoms, in particular an alkyl radical having the general formula C x H 2x + 2-n , where x = 1 to 20, preferably x = 1 to 10, and n is the number of dimethylurea substituents with n = an integer from 2 to 20. In this case, it is furthermore preferably provided that alkyl or this aliphatic radical is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl or decyl, where these alkyl radicals may furthermore preferably also be unbranched, mono-branched, multiply branched or alkyl-substituted ,

Bevorzugt sind solche Alkylreste, die ihrerseits einfach oder mehrfach mit C1- bis C5-Alkyl substituiert sind. C1- bis C5-Alkyl gemäß der vorliegenden Erfindung kann Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 2,2-Dimethylpropyl oder 1-Ethylpropyl bedeuten.Preference is given to those alkyl radicals which in turn are monosubstituted or polysubstituted by C 1 - to C 5 -alkyl. C 1 to C 5 alkyl according to the present invention may be methyl, ethyl, n-propyl, 1-methylethyl, n-butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, n-pentyl, 1-methylbutyl, 2 Methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl or 1-ethylpropyl.

Weiterhin bevorzugt kann ein Alkylrest, insbesondere Methyl, Ethyl, Propyl, Butyl, seinerseits, insbesondere mehrfach, auch mit einem C3- bis C15-Cycloalkylrest substituiert sein, wobei C3- bis C15-Cycloalkyl die unten wiedergegebene Bedeutung aufweist.Further preferably, an alkyl radical, in particular methyl, ethyl, propyl, butyl, in turn, in particular multiply, may also be substituted by a C3- to C15-cycloalkyl radical, where C3- to C15-cycloalkyl has the meaning given below.

Hervorzuheben ist hierbei, dass die Dimethylharnstoffsubstituenten (Anzahl der Dimethylharnstoffsubstituenten n = 2 bis 20) Substituenten des Alkyl- oder Grundgerüstes als auch Substituent eines C1- bis C5-Alkylsubstituenten oder eines C1- bis C15-Cycloalkylsubstituenten sein können.It should be emphasized here that the dimethylurea substituents (number of dimethylurea substituents n = 2 to 20) substituents of the alkyl or Backbone as well as substituent of a C1 to C5 alkyl substituent or a C1 to C15 cycloalkyl substituent may be.

In einer weiteren Ausführungsform werden bevorzugt N,N'-(Dimethyl)-Uronen der allgemeinen Formel (I) eingesetzt, in denen R einen cycloaliphatischen Rest umfasst.In a further embodiment, preference is given to using N, N '- (dimethyl) -urones of the general formula (I) in which R comprises a cycloaliphatic radical.

Der Rest R in Verbindungen der Formel (I) kann auch ein cycloaliphatischer Rest sein. Vorzugsweise weist der cycloaliphatische Rest 3-20 Kohlenstoffatome auf. Gemäß der vorliegenden Erfindung kann ein cycloaliphatischer Rest insbesondere C3-bis C20, bevorzugt C3- bis C15-Cycloalkyl bedeuten. R kann weiterhin bevorzugt einen monocyclischen oder bicyclischen Cycloalkylrest mit 3 bis 15 Kohlenstoffatomen bedeuten. Insbesondere bedeutet C3- bis C20-Cycloalkyl, vorzugsweise C3- bis C15-Cycloalkyl einen Cycloalkylrest, der die allgemeine Formel CxH2x-n aufweist, wobei x = 1 bis 20 und n die Anzahl der Dimethylharnstoffsubstituenten mit n = eine ganze Zahl von 2 bis 20 bedeutet. Weiterhin bevorzugt kann C3- bis C15-Cycloalkyl Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl bedeuten, wobei diese Cycloalkylreste ihrerseits weiterhin bevorzugt einfach oder mehrfach mit C1- bis C5-Alkylresten der oben wiedergegebenen Bedeutung substituiert sein können. Hervorzuheben ist hierbei, dass die Dimethylharnstoffsubstituenten (Anzahl der Dimethylharnstoffsubstituenten n = 2 bis 20) Substituenten des Cycloalkyl-Grundgerüstes als auch Substituent eines C1- bis C5-Alkylrestes sein können.The radical R in compounds of the formula (I) can also be a cycloaliphatic radical. Preferably, the cycloaliphatic radical has 3-20 carbon atoms. According to the present invention, a cycloaliphatic radical may in particular be C3 to C20, preferably C3 to C15 cycloalkyl. R can furthermore preferably be a monocyclic or bicyclic cycloalkyl radical having 3 to 15 carbon atoms. In particular, C3 to C20 cycloalkyl, preferably C3 to C15 cycloalkyl, means a cycloalkyl radical having the general formula C x H 2x-n , where x = 1 to 20 and n is the number of dimethylurea substituents where n = an integer of 2 to 20 means. Furthermore, C 3 -C 15 -cycloalkyl may preferably be cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl, where these cycloalkyl radicals may in turn be further preferably monosubstituted or polysubstituted by C 1 - to C 5 -alkyl radicals of the meaning given above. It should be emphasized here that the dimethylurea substituents (number of dimethylurea substituents n = 2 to 20) can be substituents of the cycloalkyl skeleton as well as a substituent of a C1 to C5-alkyl radical.

In einer weiteren Ausführungsform der Erfindung werden vorzugsweise N,N'-(Dimethyl)-Urone der allgemeinen Formel (I) eingesetzt, in denen R ein nichtsubstituierter, halogensubstituierter und/oder alkylsubstituierter aromatischer Rest ist. Solche aromatische Urone besitzen eine hohe Reaktivität, so dass die entstehende Wärmemenge über einen kurzen Zeitraum abgegeben wird (hoher maximaler Wärmestrom).In a further embodiment of the invention, preference is given to using N, N '- (dimethyl) -urones of the general formula (I) in which R is an unsubstituted, halogen-substituted and / or alkyl-substituted aromatic radical. Such aromatic urons have a high reactivity, so that the resulting amount of heat is released over a short period of time (high maximum heat flow).

Der Rest R in Verbindungen der Formel (I) kann auch ein nichtsubstituierter, halogen-substituierter und/oder alkylsubstituierter aromatischer Rest sein.The radical R in compounds of the formula (I) may also be an unsubstituted, halogen-substituted and / or alkyl-substituted aromatic radical.

Halogen kann insbesondere Fluor, Chlor oder Brom bedeuten.Halogen may in particular mean fluorine, chlorine or bromine.

Gemäß der vorliegenden Erfindung kann ein nichtsubstituierter, halogensubstituierter und/oder alkylsubstituierter aromatischer Rest, insbesondere mit 1 bis 4 Kernen, verwendet werden. Besonders bevorzugt sind Phenyl- und Naphthylreste mit n = 2 bis 4 Dimethylharnstoffresten gemäß allgemeiner Formel (II) oder Formel (III).According to the present invention, an unsubstituted, halogen-substituted and / or alkyl-substituted aromatic radical, in particular having 1 to 4 cores, can be used. Particularly preferred are phenyl and naphthyl radicals with n = 2 to 4 dimethylurea radicals according to general formula (II) or formula (III).

Insbesondere kann ein nichtsubstituierter, halogensubstituierter und/oder alkylsubstituierter aromatischer Rest ein Rest der allgemeinen Formel (II) oder Formel (III) sein, mit wobei gleichzeitig oder unabhängig gilt
R2 = bei jedem Auftreten unabhängig voneinander ausgewählt aus H, Halogen und Alkyl
n = 2, 3 oder 4.
In particular, an unsubstituted, halogen-substituted and / or alkyl-substituted aromatic radical may be a radical of the general formula (II) or formula (III), with where simultaneous or independent applies
R 2 = each occurrence independently selected from H, halogen and alkyl
n = 2, 3 or 4.

Halogen ist vorzugsweise Fluor, Chlor oder Brom.
Alkyl ist vorzugsweise C1- bis C5-Alkyl.
Halogen is preferably fluorine, chlorine or bromine.
Alkyl is preferably C1 to C5 alkyl.

Gemäß der vorliegenden Erfindung kann n = eine Zahl von 2 bis 20 bedeuten, d.h., dass erfindungsgemäß Verbindungen mit 2 bis 20 Dimethylharnstoffresten eingesetzt werden können. Vorzugsweise ist n = eine ganze Zahl von 2 bis 10 und mehr bevorzugt ist n = eine ganze Zahl von 2 bis 8, und noch mehr bevorzugt ist n = 2 oder 3. Somit können gemäß der vorliegenden Erfindung insbesondere N,N'-(Dimethyl)-Diurone, N,N'-(Dimethyl)-Triurone oder N,N'-(Dimethyl)-Oligourone, der allgemeinen Formel (I) oder Mischungen hiervon, mit zwei, drei oder bis zu 20 Dimethylharnstoffresten, eingesetzt werden. Besonders bevorzugt sind hierbei N,N'-(Dimethyl)-Diurone mit n = 2 und N,N'-(Dimethyl)-Triurone mit n = 3. Darüber hinaus sind weiterhin Oligourone mit n = 4 bis 20 bevorzugt, wobei n eine Zahl von 4 bis 20 sein kann. Hervorzuheben ist, dass der Wahl des Grundgerüstes eine untergeordnete Bedeutung zukommt.According to the present invention, n = a number from 2 to 20, ie that according to the invention compounds having from 2 to 20 dimethylurea radicals can be used. Preferably, n = an integer of 2 to 10 and more preferably n = an integer from 2 to 8, and even more preferably n = 2 or 3. Thus, according to the present invention, in particular N, N '- (dimethyl) diurons, N, N' - (dimethyl) Triurones or N, N '- (dimethyl) oligourones, the general formula (I) or mixtures thereof, with two, three or up to 20 dimethylurea residues. N, N '- (dimethyl) diurones with n = 2 and N, N' - (dimethyl) triurones with n = 3 are particularly preferred. In addition, oligourones with n = 4 to 20 are furthermore preferred, where n is a Number can be from 4 to 20. It should be emphasized that the choice of the basic structure is of secondary importance.

Ganz besonders bevorzugt können gemäß der vorliegenden Verbindung N,N'-(Dimethyl)-Urone der allgemeiner Formel (I) ausgewählt aus der Gruppe Bis[4-(N,N-dimethylurea)cyclohexyl]methane (H12MDI-Uron), 1,1'-hexamethylenebis[3,3-dimethyl-urea] (HDI-Uron), N,N"-1,5-naphthalenediylbis[N',N'-dimethyl-urea] (NDI-Uron), 1,1'-m-Xylylenebis(3,3-dimethylurea) (MXDI-Uron), N,N"-1,4-phenylenebis[N',N'-dimethyl-urea] (PDI-Uron), 4,4'-Methylenediphenylene bis(dimethylurea) (MDI-Uron), 1-(N,N-Dimethylurea)-3-(N,N-dimethylureamethyl)-3,5,5-trimethylcyclohexane (IPDI-Uron) und/ oder Mischungen hiervon verwendet werden.According to the present compound, very particular preference is given to N, N '- (dimethyl) urones of the general formula (I) selected from the group of bis [4- (N, N-dimethylurea) cyclohexyl] methanes (H12MDI-urone), 1, 1'-hexamethylene bis [3,3-dimethyl-urea] (HDI-Uron), N, N "-1,5-naphthalenediylbis [N ', N'-dimethyl-urea] (NDI-urone), 1,1' -m-xylylenebis (3,3-dimethylurea) (MXDI-urone), N, N "-1,4-phenylene to [N ', N'-dimethyl-urea] (PDI-urone), 4,4'-methylenediphenylenes bis (dimethylurea) (MDI-urone), 1- (N, N-dimethylurea) -3- (N, N-dimethylureamethyl) -3,5,5-trimethylcyclohexane (IPDI-urone) and / or mixtures thereof.

Weiterhin bevorzugt ist gemäß der vorliegenden Erfindung, dass mindestens zwei verschiedene N,N'-(Dimethyl)-Urone der allgemeinen Formel (I) als Härter eingesetzt werden.Further preferred according to the present invention is that at least two different N, N '- (dimethyl) -urones of the general formula (I) are used as hardeners.

Es hat sich erfindungsgemäß insbesondere herausgestellt, dass N,N'-(Dimethyl)-Urone der allgemeinen Formel (I) als alleinige Härter in Epoxidharz-Zusammensetzungen eingesetzt werden können. Entsprechend können diese Epoxidharz-Zusammensetzungen frei von weiteren Härtern, Co-Härtern, Härtungsbeschleunigern und/oder Katalysatoren zur Härtung von Epoxidharzen sein.In particular, it has been found according to the invention that N, N '- (dimethyl) -urones of the general formula (I) can be used as sole hardeners in epoxy resin compositions. Accordingly, these epoxy resin compositions may be free of further curing agents, co-hardeners, curing accelerators and / or catalysts for curing epoxy resins.

Erfindungsgemäß können die Epoxidharz-Zusammensetzungen frei von solchen Substanzen sein, also insbesondere einen Gehalt von ≤ 1 Gew.-%, noch mehr bevorzugt ≤0,1 Gew.-%, noch mehr bevorzugt ≤ 0,001 Gew.-% und noch mehr bevorzugt von 0 Gew.-% an solchen Verbindungen, bezogen auf das Gesamtgewicht der Epoxidharz-Zusammensetzung, umfassen.According to the invention, the epoxy resin compositions may be free from such substances, ie in particular a content of ≦ 1% by weight, more preferably ≦ 0.1% by weight, even more preferably ≦ 0.001% by weight and even more preferably from 0 wt .-% of such compounds, based on the total weight of the epoxy resin composition include.

In einer bevorzugten Ausführungsform umfasst die gesamte Epoxidharz-Zusammensetzung neben den Alkyl- oder Dialkyl-Semicarbazonen der allgemeinen Formel (I) keine weiteren Härter und/oder Co-Härter. Insbesondere ist die Epoxid-Zusammensetzung frei von weiteren Härtern und/oder Co-Härtern. Übliche Härter und/oder Co-Härter sind beispielsweise aliphatische, cycloaliphatische und aromatische Amine, Polyamine, Amido-Amine, Polyamide, Ketimine , Mercaptane, Isocyanate, Anhydride, Carbonsäuren, Polyphenole, Aminoharze und Phenolharze sowie Dicyandiamid.In a preferred embodiment, the entire epoxy resin composition comprises, in addition to the alkyl or dialkyl semicarbazones of the general formula (I), no further hardeners and / or co-hardeners. In particular, the epoxy composition is free of further hardeners and / or co-hardeners. Typical hardeners and / or co-hardeners are, for example, aliphatic, cycloaliphatic and aromatic amines, polyamines, amidoamines, polyamides, ketimines, mercaptans, isocyanates, anhydrides, carboxylic acids, polyphenols, amino resins and phenolic resins and also dicyandiamide.

Frei von weiteren Härtern und/oder Co-Härtern bedeutet dabei insbesondere, dass das Gesamtsystem insgesamt einen Gehalt an weiteren Verbindungen, die als Härter und/oder Co-Härter angesehen werden können, von weniger als 1 Gew.-%, bezogen auf die gesamte Epoxidharz-Zusammensetzung, insbesondere von weniger als 0,1 Gew.-%, noch mehr bevorzugt von weniger als 0,01 Gew.-% und besonders bevorzugt von 0 Gew.-% aufweist.In particular, free of further hardeners and / or co-hardeners means that the total system has a content of further compounds which can be regarded as hardeners and / or co-hardeners of less than 1% by weight, based on the total Epoxy resin composition, in particular less than 0.1 wt .-%, more preferably less than 0.01 wt .-% and particularly preferably from 0 wt .-%.

In einer weiteren Ausführungsform ist die erfindungsgemäße Expoxidharz-Zusammensetzung frei von Härtungsbeschleunigern und/oder Katalysatoren zur Härtung von Epoxidharzen. Übliche Härtungsbeschleuniger und/oder Katalysatoren zur Härtung von Epoxidharzen sind beispielsweise tertiäre Amine, Imidazole, Urone, Verbindungen auf der Basis von Bortrifluorid, Titanatverbindungen.In a further embodiment, the epoxy resin composition according to the invention is free of curing accelerators and / or catalysts for curing epoxy resins. Typical curing accelerators and / or catalysts for curing epoxy resins are, for example, tertiary amines, imidazoles, urones, compounds based on boron trifluoride, titanate compounds.

Frei von weiteren Härtungsbeschleuniger und/oder Katalysatoren zur Härtung von Epoxidharzen bedeutet dabei insbesondere, dass das Gesamtsystem insgesamt einen Gehalt an weiteren Verbindungen, die als Härtungsbeschleuniger und/oder Katalysatoren zur Härtung von Epoxidharzen angesehen werden können, von weniger als 1 Gew.-%, bezogen auf die gesamte Epoxidharz-Zusammensetzung, insbesondere von weniger als 0,1 Gew.-%, noch mehr bevorzugt von weniger als 0,01 Gew.-% und besonders bevorzugt von 0 Gew.-% aufweist.Free from further curing accelerators and / or catalysts for the curing of epoxy resins means in particular that the overall system has a content of other compounds that can be regarded as curing accelerators and / or catalysts for the curing of epoxy resins, of less than 1% by weight, based on the total epoxy resin composition, in particular less than 0.1% by weight, even more preferably less than 0.01% by weight and particularly preferably 0% by weight having.

In der am meisten bevorzugten Ausführungsform ist die Epoxidharz-Zusammensetzung neben den Alkyl- oder Dialkylsemicarbazonen der allgemeinen Formel (I) oder Mischungen davon frei von weiteren Härtern, Co-Härtern, Härtungsbeschleunigern und Katalysatoren zur Härtung von Epoxidharzen.In the most preferred embodiment, in addition to the alkyl or dialkyl semicarbazones of general formula (I) or mixtures thereof, the epoxy resin composition is free of further curing agents, co-curing agents, curing accelerators and catalysts for curing epoxy resins.

In Weiterbildung der vorliegenden Erfindung sind ebenso Epoxidharz-Zusammensetzungen zur Herstellung von Formteilen umfassend a) mindestens ein härtbares Epoxidharz und b) mindestens einen Härter für Epoxidharze ausgewählt aus der Gruppe der bis- oder multifunktionalen N,N'-(Dimethyl)-Urone der allgemeinen Formel (I) oder Mischungen hiervon Gegenstand der vorliegenden Erfindung, mit

        R - (NH-CO-N(CH3)2)n     Formel (I)

wobei

  • R = ein linearer oder verzweigter aliphatischer Rest, oder
    ein linearer oder verzweigter cycloaliphatischer Rest, oder
    ein nichtsubstituierter, halogensubstituierter und/oder alkylsubstituierter aromatischer Rest, und
  • n = eine Zahl von 2 bis 20 bedeutet,
In a further development of the present invention are also epoxy resin compositions for the production of moldings comprising a) at least one curable epoxy resin and b) at least one curing agent for epoxy resins selected from the group of bis- or multifunctional N, N '- (dimethyl) -Urone the general Formula (I) or mixtures thereof Subject of the present invention, with

R - (NH-CO-N (CH 3 ) 2 ) n formula (I)

in which
  • R = a linear or branched aliphatic radical, or
    a linear or branched cycloaliphatic radical, or
    an unsubstituted, halogen-substituted and / or alkyl-substituted aromatic radical, and
  • n = a number from 2 to 20,

Vorzugsweise umfasst die Epoxidharz-Zusammensetzung neben dem Härter aus der Gruppe der N,N'-(Dimethyl)-Urone der allgemeinen Formel (I) oder Mischungen hiervon keine weiteren Härter, Co-Härter, Härtungsbeschleuniger oder andere Katalysatoren zur Härtung von Epoxidharzen. Weiterhin vorzugsweise umfasst die Epoxidharz-Zusammensetzung den Härter aus der Gruppe der N,N'-(Dimethyl)-Urone der allgemeinen Formel (I) oder Mischungen hiervon in einer Menge, die während der Härtung Epoxidharz-Zusammensetzung bei einer Temperatur von 60 bis 180 °C einen maximalen Wärmestrom von 0,05 bis 0,99 W/ g (bezogen auf die Masse der Epoxidharz-Zusammensetzung) in der Epoxidharz-Zusammensetzung erzeugt, so dass die Epoxidharz-Zusammensetzung vollständig aushärtet.In addition to the hardener from the group of the N, N '- (dimethyl) -urones of the general formula (I) or mixtures thereof, the epoxy resin composition preferably comprises no further hardeners, co-hardeners, curing accelerators or other catalysts for curing epoxy resins. Further preferably, the epoxy resin composition comprises the hardener selected from the group consisting of the N, N '- (dimethyl) -urones of the general formula (I) or mixtures thereof in an amount which, during the curing, epoxy resin composition at a temperature of 60 to 180 ° C a maximum heat flow of 0.05 to 0.99 W / g (based on the Mass of the epoxy resin composition) in the epoxy resin composition so that the epoxy resin composition fully cures.

Im Hinblick auf die härtbaren Epoxidharze unterliegt die vorliegende Erfindung keinerlei Beschränkung. Es kommen insbesondere sämtliche handelsüblichen Produkte in Frage, die üblicherweise mehr als eine 1,2-Epoxidgruppe (Oxiran) aufweisen und dabei gesättigt oder ungesättigt, aliphatisch, cycloaliphatisch, aromatisch oder heterozyklisch sein können. Außerdem können die Epoxidharze Substituenten wie Halogene, Phosphor- und Hydroxyl-Gruppen aufweisen. Epoxidharze auf Basis Glycidylpolyether von 2,2-Bis(4-hydroxyphenyl)-propan (Bisphenol A) sowie das mit Brom substituierte Derivat (Tetrabrombisphenol A), Glycidylpolyether von 2,2-Bis(4-hydroxyphenyl)methan (Bisphenol F) und Glycidylpolyether von Novolacken sowie auf Basis von Anilin oder substituierten Anilinen wie beispielsweise p-Aminophenol oder 4,4'-Diaminodiphenylmethane können durch Verwendung der erfindungsgemäßen Härter besonders gut gehärtet werden.With respect to the curable epoxy resins, the present invention is not limited. There are in particular all commercially available products in question, which usually have more than one 1,2-epoxide group (oxirane) and thereby may be saturated or unsaturated, aliphatic, cycloaliphatic, aromatic or heterocyclic. In addition, the epoxy resins may have substituents such as halogens, phosphorus and hydroxyl groups. 2,2-bis (4-hydroxyphenyl) -propane (bisphenol A) -based epoxy resins and the bromine-substituted derivative (tetrabromobisphenol A), glycidyl polyethers of 2,2-bis (4-hydroxyphenyl) methane (bisphenol F) and Glycidyl polyethers of novolaks as well as those based on aniline or substituted anilines, such as, for example, p-aminophenol or 4,4'-diaminodiphenylmethane, can be cured particularly well by using the hardeners according to the invention.

Damit umfasst eine bevorzugte Epoxidharz-Zusammensetzung als härtbares Epoxidharz insbesondere mindestens ein Epoxidharz aus der Gruppe der Epoxidharze auf Basis Glycidylpolyether von 2,2-Bis(4-hydroxyphenyl)propan (Bisphenol A), dessen mit Brom substituiertes Derivat (Tetrabrombisphenol A), Glycidylpolyether von 2,2-Bis(4-hydroxyphenyl)-methan (Bisphenol F) und/oder Glycidylpolyether von Novolac-Harzen.Thus, a preferred epoxy resin composition comprises as curable epoxy resin in particular at least one epoxy resin from the group of epoxy resins based on glycidyl polyether of 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), its bromine-substituted derivative (tetrabromobisphenol A), glycidyl polyether of 2,2-bis (4-hydroxyphenyl) methane (bisphenol F) and / or glycidyl polyethers of novolac resins.

Die Einsatzmenge der erfindungsgemäßen Härter kann weiterhin bevorzugt auf 0,01 bis 15 Teile N,N'-(Dimethyl)-Uron gemäß Formel (I) oder Mischungen hiervon pro 100 Teile Harz, vorzugsweise 0,1 bis 15 Teile, vorzugsweise 1 bis 15 Teile und ganz besonders bevorzugt 2 bis 15 Teile pro 100 Teile Harz, eingestellt werden. Weiterhin bevorzugt sind Einsatzmengen in den auf 100 Teile Harz 1 bis 12 Teile, insbesondere 2 bis 12 Teile, weiterhin bevorzugt 3 bis 12 Teile, besonders bevorzugt 4 bis 12 Teile und ganz besonders bevorzugt 5 bis 12 Teile N,N'-(Dimethyl)-Uron gemäß Formel (I) oder Mischungen hiervon eingesetzt werden. Auch eine Kombination mehrerer erfindungsgemäßer Härter insbesondere in dem hier angegebenen Verhältnis wird durch diese Erfindung abgedeckt.The amount used of the hardener according to the invention may further preferably 0.01 to 15 parts of N, N '- (dimethyl) uron of formula (I) or mixtures thereof per 100 parts of resin, preferably 0.1 to 15 parts, preferably 1 to 15 Parts and most preferably 2 to 15 parts per 100 parts of resin can be adjusted. Preference is further given to amounts used in the per 100 parts of resin 1 to 12 parts, in particular 2 to 12 parts, more preferably 3 to 12 parts, more preferably 4 to 12 parts and most preferably 5 to 12 parts of N, N '- (dimethyl) -Uron according to formula (I) or mixtures thereof. A combination of several hardeners according to the invention, in particular in the ratio given here, is also covered by this invention.

Mit diesen Mengen lässt sich erfindungsgemäß bei einer Temperatur von 60 bis 180 °C ein maximaler Wärmestrom von 0,05 bis 0,99 W/g (bezogen auf die Masse an Epoxidharz) in der Epoxidharz-Zusammensetzung erzeugen, so dass die Epoxidharz-Zusammensetzung vollständig aushärtet.With these amounts, according to the invention, at a temperature of 60 to 180 ° C., a maximum heat flow of 0.05 to 0.99 W / g (based on the mass of epoxy resin) in the epoxy resin composition can be produced so that the epoxy resin composition fully cured.

Damit kann bevorzugt gemäß der vorliegenden Erfindung eine Epoxidharz-Zusammensetzung 0,01 bis 10 Gew.-% (bezogen auf die Masse der Epoxidharz-Zusammensetzung) an N,N'-(Dimethyl)-Uron gemäß Formel (I) oder Mischugnen hiervon umfassen. Besonders bevorzugt sind Epoxidharz-Zusammensetzungen, die mindestens 0,01 Gew.-%, insbesondere mindestens 0,1 Gew.-%, besonders bevorzugt mindestens 1,0 Gew.-% und gleichzeitig höchstens 10 Gew.-%, insbesondere höchstens 8 Gew.-% und ganz besonders höchstens 7 Gew.-% N,N'-(Dimethyl)-Uron gemäß Formel (I) oder Mischungen hiervon umfassen.Thus, according to the present invention, an epoxy resin composition may preferably comprise 0.01 to 10% by weight (based on the weight of the epoxy resin composition) of N, N '- (dimethyl) uron of formula (I) or mixtures thereof , Particular preference is given to epoxy resin compositions which contain at least 0.01% by weight, in particular at least 0.1% by weight, more preferably at least 1.0% by weight and at the same time at most 10% by weight, in particular not more than 8% by weight %, more preferably at most 7% by weight of N, N '- (dimethyl) uron of formula (I) or mixtures thereof.

Gemäß einer bevorzugten Epoxidharz-Zusammensetzung oder des hierein beschriebenen Verfahrens oder Verwendung ist gemäß der vorliegenden Erfindung insbesondere auch vorgesehen, dass die Epoxidharz-Zusammensetzung das N,N'-(Dimethyl)-Uron der allgemeinen Formel (I) oder Mischungen hiervon in einer Menge umfasst, die während der Härtung bei einer Temperatur von 60 bis 180 °C, insbesondere von 60 bis 160 °C und ganz besonders bevorzugt von 60 bis 150 °C einen maximalen Wärmestrom von 0,05 bis 0,99 W/ g (bezogen auf die Masse der Epoxidharz-Zusammensetzung) in der Epoxidharz-Zusammensetzung erzeugt, so dass die Epoxidharz-Zusammensetzung vollständig aushärtet. Es kann jedoch auch vorgesehen sein, dass die Epoxidharz-Zusammensetzung das N,N'-(Dimethyl)-Uron der allgemeinen Formel (I) oder Mischungen hiervon in einer Menge umfasst, die während der Härtung bei einer Temperatur von 80 bis 160 °C, insbesondere von 90 bis 160 °C und ganz besonders bevorzugt von 100 bis 160 °C einen maximalen Wärmestrom von 0,05 bis 0,99 W/ g (bezogen auf die Masse der Epoxidharz-Zusammensetzung) in der Epoxidharz-Zusammensetzung erzeugt, so dass die Epoxidharz-Zusammensetzung vollständig aushärtet.According to a preferred epoxy resin composition or the method or use described herein, it is also particularly contemplated according to the present invention that the epoxy resin composition comprises the N, N '- (dimethyl) uron of general formula (I) or mixtures thereof in an amount comprises, during the curing at a temperature of 60 to 180 ° C, in particular from 60 to 160 ° C and most preferably from 60 to 150 ° C, a maximum heat flow of 0.05 to 0.99 W / g (based on the bulk of the epoxy resin composition) in the epoxy resin composition so that the epoxy resin composition fully cures. However, it may also be contemplated that the epoxy resin composition comprises the N, N '- (dimethyl) uron of general formula (I) or mixtures thereof in an amount which, during cure, is at a temperature of 80 to 160 ° C , in particular from 90 to 160 ° C and most preferably from 100 to 160 ° C, a maximum heat flow of 0.05 to 0.99 W / g (based on the mass of the epoxy resin composition) produced in the epoxy resin composition so that the epoxy resin composition cures completely.

Gleichzeitig oder unabhängig hiervon kann vorgesehen sein, dass die Menge an N,N'-(Dimethyl)-Uronen der allgemeinen Formel (I) oder Mischungen hiervon einen maximalen Wärmestrom von 0,05 bis 0,99 W/ g, insbesondere 0,05 bis 0,80 W/ g, besonders bevorzugt 0,05 bis 0,70 W/ g und ganz besonders bevorzugt 0,05 bis 0,60 W/ g (bezogen auf die Masse der Epoxidharz-Zusammensetzung) in der Epoxidharz-Zusammensetzung erzeugt, so dass die Epoxidharz-Zusammensetzung vollständig aushärtet.At the same time or independently thereof, it may be provided that the amount of N, N '- (dimethyl) -units of the general formula (I) or mixtures thereof has a maximum heat flow of 0.05 to 0.99 W / g, in particular 0.05 to 0.80 W / g, more preferably 0.05 to 0.70 W / g and most preferably 0.05 to 0.60 W / g (based on the mass of the epoxy resin composition) produced in the epoxy resin composition so that the epoxy resin composition cures completely.

Erfindungsgemäß härtet die Epoxidharz-Zusammensetzung vollständig aus. Dies bedeutet insbesondere, dass die Epoxidharz-Zusammensetzung zu ≥ 80 %, bevorzugt zu ≥90 %, mehr bevorzugt zu ≥95 %, noch mehr bevorzugt zu ≥98 %, insbesondere zu ≥99 % und am meisten bevorzugt zu 100 % aushärtet. Entsprechend haben die Epoxy-Gruppen in der ausgehärteten Epoxidharz-Zusammensetzung insbesondere zu ≥80 %, bevorzugt zu ≥90 %, mehr bevorzugt zu ≥ 95 %, noch mehr bevorzugt zu ≥98 %, insbesondere zu ≥99 % und am meisten bevorzugt zu 100 % reagiert.According to the invention, the epoxy resin composition cures completely. This means in particular that the epoxy resin composition hardens to ≥ 80%, preferably to ≥90%, more preferably to ≥95%, even more preferably to ≥98%, in particular to ≥99% and most preferably to 100%. Accordingly, the epoxy groups in the cured epoxy resin composition have in particular ≥80%, preferably ≥90%, more preferably ≥95%, even more preferably ≥98%, more preferably ≥99%, and most preferably ≥100 % reacts.

Der Anteil an nicht umgesetzten Epoxy-Gruppen in der ausgehärteten Epoxidharz-Zusammensetzung beträgt insbesondere < 20 %, bevorzugt < 10 %, mehr bevorzugt < 5 %, noch mehr bevorzugt < 2 %, insbesondere < 1 % und am meisten bevorzugt 0%.The proportion of unreacted epoxy groups in the cured epoxy resin composition is in particular <20%, preferably <10%, more preferably <5%, even more preferably <2%, in particular <1% and most preferably 0%.

Durch den Zusatz weiterer handelsüblicher Additive, wie sie dem Fachmann zur Härtung von Epoxidharzen bekannt sind, kann das Härtungsprofil der erfindungsgemäßen Formulierungen variiert werden. Additive zur Verbesserung der Verarbeitbarkeit der unausgehärteten Epoxidharz-Zusammensetzungen oder zur Anpassung der thermisch-mechanischen Eigenschaften der duroplastischen Produkte an das Anforderungsprofil umfassen beispielsweise Reaktivverdünner, Füllstoffe, Rheologieadditive wie Thixotropierungsmittel oder Dispergieradditive, Defoamer, Farbstoffe, Pigmente, Zähmodifikatoren, Schlagzähverbesserer oder Brandschutzadditive.By adding further commercially available additives, as are known to the person skilled in the art for curing epoxy resins, the curing profile of the formulations according to the invention can be varied. Additives for improving the processability of the uncured epoxy resin compositions or for adapting the thermo-mechanical properties of the thermoset products to the requirement profile include, for example, reactive diluents, fillers, rheology additives, such as thixotropic agents or dispersing additives, Defoamer, dyes, pigments, tougheners, impact modifiers or fire retardant additives.

Epoxidharz-Formulierungen mit den erfindungsgemäßen Härter eignen sich sowohl für manuelle als auch maschinelle Verarbeitungsverfahren und im Besonderen zur Herstellung von imprägnierten Verstärkungsfasern und Composits, wie sie u.a. in den Schriften von G. W. Ehrenstein, Faserverbund-Kunststoffe, , 2. Auflage, Carl Hanser Verlag, München, Kapitel 5, Seite 148ff , und M. Reyne, Composite Solutions, , JEC Publications, Kapitel 5, Seite 51ff , beschrieben sind. Neben dem Einsatz in Prepreg-Verfahren ist insbesondere die Handhabung in Infusions- und Injektionsverfahren eine bevorzugte Verarbeitungsform. Hierbei sind die im Allgemeinen sehr guten Mischbarkeiten der erfindungsgemäßen Härter in den Epoxidharzen von Vorteil.Epoxy resin formulations containing the hardeners according to the invention are suitable both for manual and mechanical processing methods and, in particular, for the production of impregnated reinforcing fibers and composites, as described, inter alia, in the specifications of GW Ehrenstein, Faserverbund-Kunststoffe, , 2nd edition, Carl Hanser Verlag, Munich, chapter 5, page 148ff , and M. Reyne, Composite Solutions, , JEC Publications, Chapter 5, page 51ff , are described. In addition to the use in prepreg process, in particular the handling in infusion and injection methods is a preferred form of processing. Here, the generally very good miscibilities of the hardener according to the invention in the epoxy resins are advantageous.

Damit sind ebenfalls die Verwendung von Epoxidharz-Zusammensetzungen der oben beschriebenen Art zur Herstellung von Formteilen, insbesondere Hohlkörpern Gegenstand der vorliegenden Erfindung. Insbesondere ist diese Verwendung auf die Herstellung von Formteilen, insbesondere Hohlkörpern, gerichtet, die eine Schichtdicke oder Wandung von 4 bis mm aufweisen, insbesondere von mindestens 10 mm, bevorzugt mindestens 50 mm und noch mehr bevorzugt mindestens 100 mm, und insbesondere bis zu 500 mm.Thus, the use of epoxy resin compositions of the type described above for the production of moldings, in particular hollow bodies are also the subject of the present invention. In particular, this use is directed to the production of molded parts, in particular hollow bodies, which have a layer thickness or wall of 4 to mm, in particular of at least 10 mm, preferably at least 50 mm and more preferably at least 100 mm, and in particular up to 500 mm.

Aufgrund der günstigen Anwendungseigenschaften der erfindungsgemäßen Härter sowie ihre kostengünstige Herstellung und einhergehend ein vorteilhaftes Kosten-Nutzen-Verhältnis sind diese besonders gut für die Herstellung von Formteilen, Composits oder anderen Massiven Bauteilen geeignet. Somit ist ebenfalls ein Composit-Material oder Formteil Gegenstand der vorliegenden Erfindung, das ein Verstärkungs- und/ oder Trägermaterial und eine Epoxidharz-Zusammensetzung oben beschriebener Art umfasst.Due to the favorable application properties of the hardener according to the invention and its cost-effective production and, consequently, an advantageous cost-benefit ratio, these are particularly well suited for the production of moldings, composites or other solid components. Thus, also a composite material or molded article is the subject of the present invention comprising a reinforcing and / or support material and an epoxy resin composition of the type described above.

Als Verstärkungsmaterial können hierbei alle üblichen Verstärkungsmaterialien eingesetzt werden. Hierbei sind insbesondere jedoch nicht abschließend zu nennen: Fasern aus Glas, Kohlenstoff, Aramid und Holz bzw. Naturfasern.As reinforcing material in this case all conventional reinforcing materials can be used. In particular, however, are not conclusive: fibers made of glass, carbon, aramid and wood or natural fibers.

Im Folgenden wird die vorliegende Erfindung anhand von Beispielen erläutert, wobei die Erfindung jedoch nicht auf die Beispiele reduziert verstanden werden soll. Es ist vielmehr der Fall, dass jede Kombination von bevorzugten Ausführungen ebenfalls von der vorliegenden Erfindung umfasst wird.In the following, the present invention is explained by way of examples, but the invention should not be understood as being reduced to the examples. Rather, it is the case that any combination of preferred embodiments is also encompassed by the present invention.

BeispieleExamples


1) Verwendete Substanzen:
Epoxidharz:
Epikot 828 LVEL (E.828, Momentive): Bisphenol A-Flüssigharz (EEW 182 - 187) Härter: S1 (AlzChem AG): Bis[4-(N,N-dimethylurea)cyclohexyl]methane - CAS: -81-5 (H12MDI-Uron) S2 (AlzChem AG): 1,1'-hexamethylenebis[3,3-dimethyl-urea] - CAS: -76-2 (HDI-Uron) S4 (AlzChem AG): N,N"-1,5-naphthalenediylbis[N',N'-dimethyl-urea] - CAS: -17-7 (NDI-Uron) S5 (AlzChem AG): 1,1'-m-Xylylenebis(3,3-dimethylurea) - CAS: -48-6 (MXDI-Uron) S6 (AlzChem AG): N,N"-1,4-phenylenebis[N',N'-dimethyl-urea] - CAS: -77-1 (PDI-Uron) VP114 (AlzChem AG): 4,4'-Methylenediphenylene bis(dimethylurea) - CAS: -09-3 (MDI-Uron) VP115 (AlzChem AG): 1-(N,N-Dimethylurea)-3-(N,N-dimethylureamethyl)-3,5,5-trimethylcyclohexane - CAS: -90-0 (IPDI-Uron) DCD (DYHARD® 100S, AlzChem AG): Dicyandiamid (<10 µm) - CAS: 461-58-5
2) Die in den folgenden Beispielen genannten Daten und Messwerte wurde nach folgenden Messmethoden erhoben:

  1. a. Durchführung der DSC-Messungen mittels eines Wärmestrom-Differenzkalorimeter (DSC822e, Mettler Toledo):
    1. i. dynamisch: Als Temperaturprogramm für die Bestimmung der Peak-Temperatur (DSC Peak T) wird mit einer Rate von 10 K/min von 30 - 250 (nach Bedarf bis 400 °C) aufgeheizt. Die Onset-Temperatur wird aus der selben Messung durch anlegen der Tangente an den Reaktionspeak bestimmt. Der Energieinhalt wird durch Integration der Fläche unter dem Peak aus der selben Messung berechnet.
    2. ii. isotherm: Für die Ermittlung der isothermen Reaktionszeit und des maximalen Wärmestroms (Peak bei isothermer DSC-Messung bei gegebener Temperatur) wird die Probe mit einer Rate von 20 K/min von 30 °C auf die angegebene Soll-Temperatur T aufgeheizt und anschließend für die Zeit t konstant gehalten. Die Reaktion ist beendet, wenn der Wärmestrom nach dem Maximum wieder die Basislinie bei der gegebenen Temperatur erreicht hat. Bei der Auswertung des zeitlichen Verlaufs entspricht der positive Peak dem maximalen Wärmestrom der Härtungsreaktion. Die integrierte Fläche unter dem Peak derselben Messung ist der Energieinhalt der Reaktion. Die Onset-Temperatur wird aus derselben Messung durch anlegen der Tangente an den Reaktionspeak bestimmt.
    3. iii. Messung der Glasübergangstemperatur (Tg):
      • maximale Glastemperatur (End-Tg):
        • Für die Bestimmung der maximalen Glasübergangstemperatur (End-Tg) wurde das Material aus der Gelzeitbestimmung herangezogen. Die Formulierung wurde durch erhitzen auf 200 °C und halten der Temperatur für 10 min (Temperaturprogramm: 30 °C bis 200 °C, Heizrate: 20 K/min, Hold: 10 min) vollständig ausgehärtet. Nach Abkühlen auf 50 °C wurde die Probe zwei mal mit einer Heizrate von 20 K/min auf 200 °C aufgeheizt (2x [Temperaturprogramm: 50 °C bis 200 °C, Heizrate: 20 K/min, Hold: 10 min], Kühlrate: -20 K/min) und durch Anlegen der Tangente im Wendepunkt der größten Änderung der Wärmekapazität der End-Tg bestimmt. Aus den beiden bestimmten End-Tg's wurde das arithmetische Mittel ermittelt.
      • Glasübergangstemperatur eines Probekörpers (Tg):
        • Für die Bestimmung des Tg eines bei gegebener Temperatur gehärteten Probekörpers wurde das Material auf 250 °C (Temperaturprogramm: 30 °C bis 250 °C, Heizrate: 10 K/min) erhitzt. Der Tg wurde durch Anlegen der Tangente im Wendepunkt der größten Änderung der Wärmekapazität in der Heizkurve bestimmt.
  2. b. Ermittlung der Gelzeit
    In einem Aluminiumtiegel wurden ca. 0.5 g der jeweils frisch hergestellten Formulierungen eingewogen und in einem auf 140 °C vorgewärmten Heizblock erwärmt, wobei die Zeit der Erwärmung mittels einer Stoppuhr gemessen wird. Durch Umrühren mit einem Zahnstocher wird der Zeitpunkt bestimmt, an dem die Formulierung gelartig wird und der Tiegel an dem Zahnstocher aus dem Heizblock gehoben werden kann.
  3. c. Ermittlung der Lagerstabilität:
    • Als Startwert (0 h) wurden zunächst die dynamischen Viskositäten der jeweils frisch hergestellten Formulierungen bei 25 °C mittels eines Haake-Viskosimeters (Methode Kegel (1°)-Platte) ermittelt. Die Proben wurden dann bei der geforderten Temperatur gelagert (Raumtemperatur: Klimaschrank (T = 23 °C, rel. Feuchte = 50%; höhere Temperaturen: Ofen bei angegebener Temperatur) und die Viskosität in regelmäßigen Abständen erneut bei 25 °C gemessen.

3) Verfahren zur Herstellung einer Harzformulierung für Probekörper für mechanische Untersuchungen, für thermodynamische Untersuchungen und Untersuchungen bezüglich der Lagerstabilität.
a. In einem 1 L-Dissolver-Gefäß werden 600 g E.828 und 48 g (0.182 mol, 8 phr) mikronisiertes UR 500 (3,3'-(4-Methyl-1,3-phenylene)bis(1,1-dimethylharnstoff) eingewogen. Das Reaktionsgemisch wird mit einem Dissolver (Dispermat, VMA-Getzmann) bei U/min für 30 min dispergiert. Anschließend wird die entstandene Mischung bei 50 - 60 U/min unter Vakuum (ca. 30 mbar) ca. 2 h entgast. Die Formulierung ist gebrauchsfertig, wenn keine erkennbaren Blasen mehr an der Oberfläche sich befinden.
b. In einem 1 L-Dissolver-Gefäß werden 600 g E.828 und 48 g (0.141 mol, 8 phr) mikronisiertes VP 114 eingewogen. Das Reaktionsgemisch wird mit einem Dissolver (Dispermat, VMA-Getzmann) bei U/min für 30 min dispergiert. Anschließend wird die entstandene Mischung bei 50 - 60 U/min unter Vakuum (ca. 30 mbar) ca. 2 h entgast. Die Formulierung ist gebrauchsfertig, wenn keine erkennbaren Blasen mehr an der Oberfläche sich befinden.
c. In einem 1 L-Dissolver-Gefäß werden 600 g E.828 und 48 g (0.154 mol, 8 phr) mikronisiertes VP 115 eingewogen. Das Reaktionsgemisch wird mit einem Dissolver (Dispermat, VMA-Getzmann) bei U/min für 30 min dispergiert. Anschließend wird die entstandene Mischung bei 50 - 60 U/min unter Vakuum (ca. 30 mbar) ca. 2 h entgast. Die Formulierung ist gebrauchsfertig, wenn keine erkennbaren Blasen mehr an der Oberfläche sich befinden.
d. In einem 1 L-Dissolver-Gefäß werden 600 g E.828 und 24 g (0.071 mol, 4 phr) mikronisiertes VP 114 und 24 g (0.077 mol, 4 phr) mikronisiertes VP 115 eingewogen. Das Reaktionsgemisch wird mit einem Dissolver (Dispermat, VMA-Getzmann) bei U/min für 30 min dispergiert. Anschließend wird die entstandene Mischung bei 50 - 60 U/min unter Vakuum (ca. 30 mbar) ca. 2 h entgast. Die Formulierung ist gebrauchsfertig, wenn keine erkennbaren Blasen mehr an der Oberfläche sich befinden.
e. In einem 1 L-Dissolver-Gefäß werden 600 g E.828 und 24 g (0.071 mol, 4 phr) mikronisiertes VP 114 und 24 g (0.091 mol, 4 phr) mikronisiertes UR 500 eingewogen. Das Reaktionsgemisch wird mit einem Dissolver (Dispermat, VMA-Getzmann) bei U/min für 30 min dispergiert. Anschließend wird die entstandene Mischung bei 50 - 60 U/min unter Vakuum (ca. 30 mbar) ca. 2 h entgast. Die Formulierung ist gebrauchsfertig, wenn keine erkennbaren Blasen mehr an der Oberfläche sich befinden.
f. In einem 1 L-Dissolver-Gefäß werden 600 g E.828 und 24 g (0.077 mol, 4 phr) mikronisiertes VP 115 und 24 g (0.091 mol, 4 phr) mikronisiertes UR 500 eingewogen. Das Reaktionsgemisch wird mit einem Dissolver (Dispermat, VMA-Getzmann) bei U/min für 30 min dispergiert. Anschließend wird die entstandene Mischung bei 50 - 60 U/min unter Vakuum (ca. 30 mbar) ca. 2 h entgast. Die Formulierung ist gebrauchsfertig, wenn keine erkennbaren Blasen mehr an der Oberfläche sich befinden. Tabelle 1: Erfindungsgemäße Epoxidharz-Zusammensetzungen und deren Härtungsverhalten Zusammensetzung Nr. (erfindungsgemäß) Zusammensetzung der Harzformulierung (Teile) dyn. DSC Peak [°C] dyn. DSC Onset [°C] Gelzeit bei 140°C [min:sec] End-Tg [°C] isotherme DSC Peak bei Temp. [min.sec] isotherm. DSC: max. Wärmestrom bei Temp. [W/g] 3.a. (ja) E.828 + UR 500 (100:8) 177 152 14:00 96 140°C/9:05 140°C/0,35 120°C/17:35 120°C/0,23 100°C/36:25 100°C/0,13 80°C/118:35 80°C/0,03 3.b. (ja) E.828 + VP 114 (100 : 8) 184 169 18:00 97 140°C/10:35 140°C/0,39 120°C/47:00 120°C/0,18 100°C/141:30 100°C/0,06 80°C/>480:00 80°C/0,01 3.c. (ja) E.828 + VP 115 (100: 8) 197 176 32:00 101 140°C/ 28:39 140°C/0,22 120°C/130:35 120°C/0,06 100°C/>360:00 100°C/0,01 3.d. (ja) E.828 + VP 114 + VP 115 (100 : 4: 4) 191 163 23:00 97 140°C/14:30 140°C/0,21 3.e. (ja) E.828 + VP 114 + UR 500 (100 : 4 : 4) 176 153 14:15 98 140°C/8:20 140°C/0,37 3.f. (ja) E.828 + VP 115 + UR 500 (100:4:4) 187 155 18:00 99 140°C/10:55 140°C/0,30 S1 (ja) E.828 + H12MDI-Uron (100 : 8) 202 183 40:45 99 140°C/33:25 140°C/0,15 120°C/107:50 120°C/0,07 S2 (ja) E.828 + HDI-Uron (100: 8) 197 175 29:50 93 140°C/29:15 140°C/0,19 120°C/100:35 120°C/0,07 S4 (ja) E.828 + NDI-Uron (100 : 8) 190 179 11:50 98 140°C/15:30 140°C/0,24 120°C/41:00 120°C/0,12 100°C/154:25 100°C/0,04 S5 (ja) E.828 + MXDI-Uron (100 : 8) 190 166 22:05 93 140°C/20:35 140°C/0,27 S6 (ja) E.828 + PDI-Uron (100 : 8) 200 190 34:20 96 140°C/29:50 140°C/0,24 Tabelle 2: Epoxidharz-Zusammensetzungen (Vergleichsbeispiele) und deren Härtungsverhalten Zusammensetzung Nr. (erfindungsgemäß) Zusammensetzung der Harzformulierung (Teile) dyn. DSC Peak [°C] dyn. DSC Onset [°C] Gelzeit bei 140°C [min:sec] End-Tg [°C] isotherme DSC Peak bei Temp. [min:sec] isotherm. DSC: max. Wärmestrom bei Temp. [W/g] 3.g. (nein) E.828 + DYHARD 100S (100 : 6.5) 198 192 >120:00 169 170°C/14:30 170°C/0,29 140°C/n. a. 3.h. (nein) E.828 + DCD + UR 500 (100 : 6.5 : 3) 143 135 2:45 134 140°C/1:17 140°C/3,4 120°C/5:50 120°C/0,95 100°C/26:10 100°C/0,22 80°C/165:40 80°C/0,03 3.i. (nein) E.828 + DCD + VP 114 (100 : 6.5 : 3) 152 146 3:50 143 140°C/2:10 140°C/2,79 120°C/14:30 120°C/0,63 100°C/72:55 100°C/0,15 80°C/>480:00 80°C/n. a. 3.j. (nein) E.828 + DCD + VP 115 (100 : 6.5 : 3) 162 152 5:45 138 140°C/3:45 140°C/1,54 120°C/18:25 120°C/0,26 Tabelle 3: Erfindungsgemäße Epoxidharz-Zusammensetzungen und deren Härtungsverhalten - Variation der Anteile Härter bei einer Härtungstemperatur von 140 °C Zusammensetzung Nr. (erfindungsgemäß) Zusammensetzung der Harzformulierung (Teile) dyn. DSC Peak [°C] dyn. DSC Onset [°C] Gelzeit bei 140°C [min:sec] End-Tg [°C] isotherme DSC Peak bei Temp. [min:sec] isotherm. DSC: max. Wärmestrom bei Temp. [W/g] 4.a. (ja) E.828 + VP 114 (100 : 6) 182 163 23:30 98 140°C/10:50 140°C/0,28 4:b. (ja) E.828 + VP 114 (100 : 7) 182 163 19:45 99 140°C/11:25 140°C/0,28 4.c.(ja) E.828 + VP 114 (100 : 9) 182 163 16:30 96 140°C/ 10:30 140°C/0,46 4.d. (ja) E.828 + VP 114 (100 : 10) 181 163 16:00 98 140°C/10:50 140°C/0,48 4.e. (ja) E.828 + VP 114 (100 : 11) 180 163 14:50 94 140°C/10:30 140°C/0,60 4.f. (ja) E.828 + VP 115 (100 : 6) 197 176 44:00 100 140°C/35:15 140°C/0,12 4.g. (ja) E.828 + VP 115 (100 : 7) 197 176 37:00 100 140°C/29:30 140°C/0,16 4.h. (ja) E.828 + VP 115 (100 : 9) 198 178 34:00 100 140°C/29:05 140°C/0,20 4.i. (ja) E.828 + VP 115 (100 : 10) 196 176 32:30 99 140°C/28:05 140°C/0,23 4.j. (ja) E.828 + VP 115 (100 : 11) 196 176 31:45 101 140°C/26:20 140°C/0,25 4.k. (ja) E.828 + UR 500 (100 : 6) 174 149 18:05 98 140°C/7:15 140°C/0,24 4.l. (ja) E.828 + UR 500 (100 : 7) 174 151 15:20 98 140°C/7:25 140°C/0,44 4.m. (ja) E.828 + UR 500 (100 : 9) 175 151 12:05 97 140°C/6:35 140°C/0,54 4.n. (ja) E.828 + UR 500 (100: 10) 173 151 10:45 95 140°C/6:35 140°C/0,60 4.o. (ja) E.828 + UR 500 (100 : 11) 174 150 9:50 94 140°C/6:15 140°C/0,73
1) Substances used:
epoxy resin:
Epicot 828 LVEL (E.828, Momentive): Bisphenol A Liquid Resin (EEW 182 - 187) Harder: S1 (AlzChem AG): Bis [4- (N, N-dimethylurea) cyclohexyl] methane - CAS: -81-5 (H12MDI-Uron) S2 (AlzChem AG): 1,1'-hexamethylenebis [3,3-dimethyl-urea] - CAS: -76-2 (HDI-Uron) S4 (AlzChem AG): N, N "-1,5-naphthalenediylbis [N ', N'-dimethyl-urea] - CAS: -17-7 (NDI-Uron) S5 (AlzChem AG): 1,1'-m-Xylylenebis (3,3-dimethylurea) - CAS: -48-6 (MXDI-Uron) S6 (AlzChem AG): N, N "-1,4-phenylenebis [N ', N'-dimethyl-urea] - CAS: -77-1 (PDI-Uron) VP114 (AlzChem AG): 4,4'-methylenediphenylenes bis (dimethylurea) - CAS: -09-3 (MDI-Uron) VP115 (AlzChem AG): 1- (N, N-Dimethylurea) -3- (N, N-dimethylureamethyl) -3,5,5-trimethylcyclohexane - CAS: -90-0 (IPDI-Uron) DCD (DYHARD® 100S, AlzChem AG): Dicyandiamide (<10 μm) - CAS: 461-58-5
2) The data and measured values given in the following examples were collected according to the following measurement methods:
  1. a. Performing DSC measurements using a differential heat calorimeter (DSC822e, Mettler Toledo):
    1. i. dynamic: As a temperature program for the determination of the peak temperature (DSC Peak T) is at a rate of 10 K / min from 30 - 250 (as needed to 400 ° C) heated. The onset temperature is determined from the same measurement by applying the tangent to the reaction peak. The energy content is calculated by integrating the area under the peak from the same measurement.
    2. ii. Isothermal: For the determination of the isothermal reaction time and the maximum heat flow (peak in isothermal DSC measurement at a given temperature), the sample is heated from 30 ° C to the specified target temperature T at a rate of 20 K / min Time t kept constant. The reaction is over when the heat flow has reached the baseline at the given temperature after the maximum. When evaluating the time course, the positive peak corresponds to the maximum heat flow of the curing reaction. The integrated area under the peak of the same measurement is the energy content of the reaction. The onset temperature is determined from the same measurement by applying the tangent to the reaction peak.
    3. iii. Measurement of glass transition temperature (Tg):
      • maximum glass transition temperature (end Tg):
        • For determining the maximum glass transition temperature (final Tg), the material from the gel time determination was used. The formulation was completely cured by heating to 200 ° C and keeping the temperature for 10 min (temperature program: 30 ° C to 200 ° C, heating rate: 20 K / min, Hold: 10 min). After cooling to 50 ° C., the sample was heated twice at a heating rate of 20 K / min to 200 ° C. (2 × [temperature program: 50 ° C. to 200 ° C., heating rate: 20 K / min, hold: 10 min], Cooling rate: -20 K / min) and determined by applying the tangent at the inflection point of the largest change in the heat capacity of the final Tg. From the two final Tg's determined the arithmetic mean.
      • Glass transition temperature of a specimen (Tg):
        • For the determination of the Tg of a specimen cured at a given temperature, the material was heated to 250 ° C (temperature program: 30 ° C to 250 ° C, heating rate: 10 K / min). The Tg was created by applying the Tangent determined at the inflection point of the largest change in the heat capacity in the heating curve.
  2. b. Determination of the gel time
    In an aluminum pan, about 0.5 g of each freshly prepared formulations were weighed and heated in a pre-heated to 140 ° C heating block, the time of heating is measured by means of a stopwatch. By stirring with a toothpick, the time is determined at which the formulation becomes gel-like and the crucible on the toothpick can be lifted out of the heating block.
  3. c. Determination of storage stability:
    • As initial value (0 h), first the dynamic viscosities of the respectively freshly prepared formulations were determined at 25 ° C. by means of a Haake viscometer (method cone (1 °) plate). The samples were then stored at the required temperature (room temperature: climatic chamber (T = 23 ° C., relative humidity = 50%, higher temperatures: oven at specified temperature) and the viscosity was measured again at 25 ° C. at regular intervals.

3) Process for the preparation of a resin formulation for test specimens for mechanical investigations, for thermodynamic investigations and investigations with regard to storage stability.
a. In a 1 L dissolver, 600 g of E.828 and 48 g (0.182 mol, 8 phr) micronized UR 500 (3,3 '- (4-methyl-1,3-phenylene) bis (1,1- The reaction mixture is dispersed with a dissolver (Dispermat, VMA-Getzmann) at rpm for 30 min., Subsequently, the resulting mixture at 50-60 U / min under vacuum (about 30 mbar) about 2 The formulation is ready to use if there are no discernable bubbles left on the surface.
b. 600 g of E.828 and 48 g (0.141 mol, 8 phr) micronized VP 114 are weighed into a 1 L dissolver vessel. The reaction mixture is dispersed with a dissolver (Dispermat, VMA-Getzmann) at rpm for 30 min. Subsequently, the resulting mixture at 50 - 60 U / min under vacuum (about 30 mbar) degassed for about 2 hours. The formulation is ready to use if there are no discernable bubbles left on the surface.
c. 600 g of E.828 and 48 g (0.154 mol, 8 phr) micronized VP 115 are weighed in a 1 L dissolver vessel. The reaction mixture is dispersed with a dissolver (Dispermat, VMA-Getzmann) at rpm for 30 min. Subsequently, the resulting mixture is degassed at 50-60 rpm under vacuum (about 30 mbar) for about 2 h. The formulation is ready to use if there are no discernable bubbles left on the surface.
d. In a 1 L dissolver, 600 g of E.828 and 24 g (0.071 mol, 4 phr) micronized VP 114 and 24 g (0.077 mol, 4 phr) micronized VP 115 are weighed. The reaction mixture is dispersed with a dissolver (Dispermat, VMA-Getzmann) at rpm for 30 min. Subsequently, the resulting mixture is degassed at 50-60 rpm under vacuum (about 30 mbar) for about 2 h. The formulation is ready to use if there are no discernable bubbles left on the surface.
e. 600 g of E.828 and 24 g (0.071 mol, 4 phr) micronized VP 114 and 24 g (0.091 mol, 4 phr) micronized UR 500 are weighed into a 1 L dissolver vessel. The reaction mixture is dispersed with a dissolver (Dispermat, VMA-Getzmann) at rpm for 30 min. Subsequently, the resulting mixture is degassed at 50-60 rpm under vacuum (about 30 mbar) for about 2 h. The formulation is ready to use if there are no discernable bubbles left on the surface.
f. 600 g of E.828 and 24 g (0.077 mol, 4 phr) micronized VP 115 and 24 g (0.091 mol, 4 phr) micronized UR 500 are weighed into a 1 L dissolver vessel. The reaction mixture is dispersed with a dissolver (Dispermat, VMA-Getzmann) at rpm for 30 min. Subsequently, the resulting mixture is degassed at 50-60 rpm under vacuum (about 30 mbar) for about 2 h. The formulation is ready to use if there are no discernable bubbles left on the surface. Table 1 : Epoxy Resin Compositions of the Invention and Their Curing Behavior Composition No. (according to the invention) Composition of the resin formulation (parts) dyn. DSC Peak [° C] dyn. DSC Onset [° C] Gel time at 140 ° C [min: sec] End-Tg [° C] isothermal DSC peak at temp. [min.sec] isothermal. DSC: max. Heat flow at temp. [W / g] 3.a. (Yes) E.828 + UR 500 (100: 8) 177 152 14:00 96 140 ° C / 9: 05 140 ° C / 0.35 120 ° C / 17: 35 120 ° C / 0.23 100 ° C / 36: 25 100 ° C / 0.13 80 ° C / 118: 35 80 ° C / 0.03 3.b. (Yes) E.828 + VP 114 (100: 8) 184 169 18:00 97 140 ° C / 10: 35 140 ° C / 0.39 120 ° C / 47: 00 120 ° C / 0.18 100 ° C / 141: 30 100 ° C / 0.06 80 ° C /> 480: 00 80 ° C / 0.01 3.c. (Yes) E.828 + VP 115 (100: 8) 197 176 32:00 101 140 ° C / 28:39 140 ° C / 0.22 120 ° C / 130: 35 120 ° C / 0.06 100 ° C /> 360: 00 100 ° C / 0.01 3.d. (Yes) E.828 + VP 114 + VP 115 (100: 4: 4) 191 163 23:00 97 140 ° C / 14: 30 140 ° C / 0.21 3.e. (Yes) E.828 + VP 114 + UR 500 (100: 4: 4) 176 153 14:15 98 140 ° C / 8: 20 140 ° C / 0.37 3.f. (Yes) E.828 + VP 115 + UR 500 (100: 4: 4) 187 155 18:00 99 140 ° C / 10: 55 140 ° C / 0.30 S1 (yes) E.828 + H12MDI-Uron (100: 8) 202 183 40:45 99 140 ° C / 33: 25 140 ° C / 0.15 120 ° C / 107: 50 120 ° C / 0.07 S2 (yes) E.828 + HDI-Uron (100: 8) 197 175 29:50 93 140 ° C / 29: 15 140 ° C / 0.19 120 ° C / 100: 35 120 ° C / 0.07 S4 (yes) E.828 + NDI-Uron (100: 8) 190 179 11:50 98 140 ° C / 15: 30 140 ° C / 0.24 120 ° C / 41: 00 120 ° C / 0.12 100 ° C / 154: 25 100 ° C / 0.04 S5 (yes) E.828 + MXDI-Uron (100: 8) 190 166 22:05 93 140 ° C / 20: 35 140 ° C / 0.27 S6 (yes) E.828 + PDI-Uron (100: 8) 200 190 34:20 96 140 ° C / 29: 50 140 ° C / 0.24 Composition No. (according to the invention) Composition of the resin formulation (parts) dyn. DSC Peak [° C] dyn. DSC Onset [° C] Gel time at 140 ° C [min: sec] End-Tg [° C] isothermal DSC peak at temp. [min: sec] isothermal. DSC: max. Heat flow at temp. [W / g] 3.g. (No) E.828 + DYHARD 100S (100: 6.5) 198 192 > 120: 00 169 170 ° C / 14: 30 170 ° C / 0.29 140 ° C / na 3.h. (No) E.828 + DCD + UR500 (100: 6.5: 3) 143 135 2:45 134 140 ° C / 1: 17 140 ° C / 3.4 120 ° C / 5: 50 120 ° C / 0.95 100 ° C / 26: 10 100 ° C / 0.22 80 ° C / 165: 40 80 ° C / 0.03 3.i. (No) E.828 + DCD + VP 114 (100: 6.5: 3) 152 146 3:50 143 140 ° C / 2: 10 140 ° C / 2.79 120 ° C / 14: 30 120 ° C / 0.63 100 ° C / 72: 55 100 ° C / 0.15 80 ° C /> 480: 00 80 ° C / na 3.j. (No) E.828 + DCD + VP 115 (100: 6.5: 3) 162 152 5:45 138 140 ° C / 3: 45 140 ° C / 1.54 120 ° C / 18: 25 120 ° C / 0.26 Composition No. (according to the invention) Composition of the resin formulation (parts) dyn. DSC Peak [° C] dyn. DSC Onset [° C] Gel time at 140 ° C [min: sec] End-Tg [° C] isothermal DSC peak at temp. [min: sec] isothermal. DSC: max. Heat flow at temp. [W / g] 4.a. (Yes) E.828 + VP 114 (100: 6) 182 163 23:30 98 140 ° C / 10: 50 140 ° C / 0.28 4: b. (Yes) E.828 + VP 114 (100: 7) 182 163 19:45 99 140 ° C / 11: 25 140 ° C / 0.28 4.c (yes) E.828 + VP 114 (100: 9) 182 163 16:30 96 140 ° C / 10:30 140 ° C / 0.46 4.d. (Yes) E.828 + VP 114 (100: 10) 181 163 16:00 98 140 ° C / 10: 50 140 ° C / 0.48 4.E. (Yes) E.828 + VP 114 (100: 11) 180 163 14:50 94 140 ° C / 10: 30 140 ° C / 0.60 4.F. (Yes) E.828 + VP 115 (100: 6) 197 176 44:00 100 140 ° C / 35: 15 140 ° C / 0.12 4.g. (Yes) E.828 + VP 115 (100: 7) 197 176 37:00 100 140 ° C / 29: 30 140 ° C / 0.16 4.h. (Yes) E.828 + VP 115 (100: 9) 198 178 34:00 100 140 ° C / 29: 05 140 ° C / 0.20 4.I. (Yes) E.828 + VP 115 (100: 10) 196 176 32:30 99 140 ° C / 28: 05 140 ° C / 0.23 4.j. (Yes) E.828 + VP 115 (100: 11) 196 176 31:45 101 140 ° C / 26: 20 140 ° C / 0.25 4.k. (Yes) E.828 + UR 500 (100: 6) 174 149 18:05 98 140 ° C / 7: 15 140 ° C / 0.24 4.l. (Yes) E.828 + UR 500 (100: 7) 174 151 15:20 98 140 ° C / 7: 25 140 ° C / 0.44 4.m. (Yes) E.828 + UR 500 (100: 9) 175 151 12:05 97 140 ° C / 6: 35 140 ° C / 0.54 4.n. (Yes) E.828 + UR 500 (100: 10) 173 151 10:45 95 140 ° C / 6: 35 140 ° C / 0.60 4.o. (Yes) E.828 + UR 500 (100: 11) 174 150 9:50 94 140 ° C / 6: 15 140 ° C / 0.73

Die Zusammensetzungen 4.a. bis 4.o. der Tabelle 4 wurden entsprechend, wie oben für die Zusammensetzungen 3.a. bis 3.f. beschrieben, hergestellt.The compositions 4.a. until 4.o. of Table 4 were used as described above for compositions 3.a. to 3.f. described, prepared.

Zusammenfassung der Ergebnissesummary of results
  1. 1) Härtungsprofil der Harzformulierungen aus 3.a bis 3.c
    1. i. Die Harzformulierungen, die gemäß den Punkten 3.a. bis 3.c. hergestellt wurden, zeigen in der dynamischen DSC-Messung, dass sie auch als Alleinhärter eingesetzt werden können. Dabei ist zu erkennen, dass der die Reaktion schon bei 100 °C starten kann, wie das Beispiel UR 500 zeigt. Die breiteren aber weniger hohen Kurven der Harzfomulierungen mit Uronen als Härter zeigen eine langsamere Härtungsreaktion, in der die freiwerdende Energie über einen größeren Temperaturbereich verteilt wird, als bei den Harzformulierungen, in denen die Urone als Beschleuniger mit DCD eingesetzt sind.
    2. ii. Die Harzformulierungen, die gemäß den Punkten 3.a bis 3.c hergestellt wurden, zeigen in den isothermen DSC-Messungen, dass die eingesetzten Urone als alleinige Härter ohne DCD eingesetzt werden können. Der Vorteil ist dabei, dass die Urone ohne DCD langsamer reagieren und die freigesetzte Wärmemenge über einen größeren Zeitraum verteilt wird, im Gegensatz zum Einsatz der Urone als Beschleuniger von DCD. Je nach eingesetzten Uron kann die Härtung schon bei unter 80 °C erfolgen, wobei der maximale Wärmestrom nicht über 0,99 W/g (bezogen auf die Masse der Epoxidharzmischung) übersteigt.
    1) Curing profile of the resin formulations from 3.a to 3.c
    1. i. The resin formulations prepared according to points 3.a. to 3.c. produced in the dynamic DSC measurement show that they can also be used as sole hardeners. It can be seen that the reaction can start at 100 ° C, as the example UR 500 shows. The wider but less high curves of the resin formulations with crowns as hardeners show a slower curing reaction in which the released energy is distributed over a wider temperature range than in the resin formulations in which the urons are used as accelerators with DCD.
    2. ii. The resin formulations prepared according to points 3.a to 3.c show in the isothermal DSC measurements that the used urones can be used as sole hardeners without DCD. The advantage here is that the Urone without DCD react more slowly and the amount of heat released over a longer period of time is distributed, in contrast to the use of Urone as an accelerator of DCD. Depending on the Uron used, the hardening can already take place at below 80 ° C., with the maximum heat flow not exceeding 0.99 W / g (based on the mass of the epoxy resin mixture).
  2. 2) Härtungsprofil der Harzformulierungen aus 3.d bis 3.f
    Die Harzformulierungen, die aus Mischungen verschiedener Urone gemäß den Punkten 3.d. bis 3.f. hergestellt wurden, zeigen, sowohl in der dynamischen DSC-Messung als auch in der isothermen DSC-Messung (Beispiel bei 140 °C), dass Härtungsprofile zwischen den Harzformulierungen mit nur einem Uron als Härter eingestellt werden können, wobei der Wärmestrom in der isothermen DSC-Messung kleiner 0,99 W/g ist.
    2) Cure profile of the resin formulations from 3.d to 3.f
    Resin formulations made from mixtures of different urons according to points 3.d. to 3.f. in both the dynamic DSC measurement and the isothermal DSC measurement (example at 140 ° C), cure profiles differ between the resin formulations with only one Uron Hardener can be adjusted, wherein the heat flow in the isothermal DSC measurement is less than 0.99 W / g.
  3. 3) Härtungsprofil der Harzformulierungen aus 4.a bis 4.o
    1. i. Die Harzformulierungen, die gemäß den Punkten 4.a. bis 4.o. hergestellt wurden, zeigen in der dynamischen DSC-Messung unabhängig vom Anteil des Härters eine langsamere Härtungsreaktion, in der die freiwerdende Energie über einen größeren Temperaturbereich verteilt wird, als bei den Harzformulierungen, in denen die Urone als Beschleuniger mit DCD eingesetzt sind.
    2. ii. Die Harzformulierungen, die gemäß den Punkten 4.a bis 4.o hergestellt wurden, zeigen in den isothermen DSC-Messungen bei 140 °C, dass die eingesetzten Urone unabhängig vom Anteil des Härters einen maximale Wärmestrom von <0,99 W/g (bezogen auf die Masse der Epoxidharzmischung) erreichen, wie am reaktivsten Uron, UR 500 im Bsp. 4.o, zu sehen ist.
    3) Curing profile of the resin formulations from 4.a to 4.o
    1. i. The resin formulations described in points 4.a. until 4.o. In the dynamic DSC measurement, regardless of the proportion of the hardener, a slower curing reaction in which the released energy is distributed over a wider temperature range than in the resin formulations in which the urons are used as accelerators with DCD is shown.
    2. ii. The resin formulations, which were prepared according to points 4.a to 4.o, show in the isothermal DSC measurements at 140 ° C. that the urons used, irrespective of the proportion of the hardener, have a maximum heat flow of <0.99 W / g ( based on the mass of the epoxy resin mixture), as can be seen on the most reactive Uron, UR 500 in Ex. 4.o.

Besonders dicke und/oder ungleichmäßig dicke Bauteile mit einer Dicke >4 mm sind schwierig zu härten. Das Problem ist die genügende und/oder gleichmäßige Abfuhr der während des exothermen Härtungsprozesses entstehenden Wärme bzw. des Wärmestroms, der in besonders kurzer Zeit bei einer Härtung z. B. mit Dicyandiamid und einem Uronbeschleuniger, wie DYHARD UR 500, entsteht. So kannn es in besonders dicken Bauteilen mit Dicken von >10 mm bis mm zu einem Wärmestau kommen, der das Bauteil thermisch schädigt, im Extremfall bis zur partiellen oder vollständigen Verkohlung. Des Weiteren führt ein zu hoher Wärmestrom bei besonders ungleichmäßig dicken Bauteilen >4 mm Dicke zu einer ungleichmäßig schnellen Härtung innerhalb eines Bauteils, wodurch besonders große Eigenspannungen aufgebaut werden. Beispiele für besonders dicke und/oder ungleichmäßig dicke Formteile bzw. Hohlkörper sind z. B. bei Windkraftanlagen die Profilnase (>4 mm bis >15 mm), insbesondere Steg und Holmen (>25 mm) und insbesondere die Blattwurzel (>10 mm bis >250 mm). Durch Auswahl des geeigneten Härters dieser Erfindung ist es möglich den Wärmestrom so einzustellen, dass die Eigenspannung der gehärteten Formteils bzw. Hohlkörpers möglichst gering ist und es während dem Härtungsprozess nicht zu einer thermischen Schädigung und/oder partiellen oder vollständigen Verkohlung kommt.Particularly thick and / or unevenly thick components with a thickness of> 4 mm are difficult to harden. The problem is the sufficient and / or uniform removal of heat generated during the exothermic curing process or the heat flow, which in a particularly short time at a cure z. B. with dicyandiamide and a uron accelerator, such as DYHARD UR 500, is formed. Thus, in particularly thick components with thicknesses of> 10 mm to mm, heat build-up can occur, which thermally damages the component, in extreme cases to partial or complete charring. Furthermore, an excessively high heat flow in the case of particularly unevenly thick components> 4 mm thick leads to an unevenly rapid hardening within a component, as a result of which particularly great residual stresses are built up. Examples of particularly thick and / or unevenly thick molded parts or hollow bodies are z. B. in wind turbines the profile nose (> 4 mm to> 15 mm), in particular web and spars (> 25 mm) and in particular the blade root (> 10 mm to> 250 mm). By selecting the suitable hardener of this invention, it is possible the heat flow so to adjust that the residual stress of the cured molding or hollow body is as low as possible and it does not come during the curing process to a thermal damage and / or partial or complete charring.

Claims (12)

  1. Use of bis- or multi-functional N,N'-(dimethyl)-urones of the general formula (I) or mixtures thereof

            R-(NH-CO-N(CH3)2)n     Formula (I)

    wherein R = a linear or branched aliphatic radical, or
    a cycloaliphatic radical, or
    an unsubstituted, halo-substituted and/or alkyl-substituted aromatic radical, and n = a number from 2 to 20, as curing agents for the controlled curing of epoxy resin compositions, wherein the epoxy resin composition comprises at least one curable epoxy resin, and wherein the epoxy resin composition does not comprise any further curing agents, co-curing agents, curing accelerators or other catalysts for the curing of epoxy resins apart from the N,N'-(dimethyl)-urone of the general formula (I) or mixtures thereof, and wherein the epoxy resin composition comprises the N,N'-(dimethyl)-urone of the general formula (I) or mixtures thereof in an amount that, during curing at a temperature of from 60 to 180°C, generates a maximum heat flow in the epoxy resin composition of from 0.05 to 0.99 W/g (based on the mass of the epoxy resin composition), so that the epoxy resin composition cures fully.
  2. Method for the controlled curing of epoxy resin compositions, by means of at least one bis-or multi-functional N,N'-(dimethyl)-urone of the general formula (I) or mixtures thereof as curing agent

            R-(NH-CO-N(CH3)2)n     Formula (I)

    wherein R = a linear or branched aliphatic radical, or
    a cycloaliphatic radical, or
    an unsubstituted, halo-substituted and/or alkyl-substituted aromatic radical, and n = a number from 2 to 20, wherein the epoxy resin composition does not comprise any further curing agents, co-curing agents, curing accelerators or other catalysts for the curing of epoxy resins apart from the N,N'-(dimethyl)-urone of the general formula (I) or mixtures thereof, and wherein the epoxy resin composition comprises the N,N'-(dimethyl)-urone of the general formula (I) or mixtures thereof in an amount that, during curing at a temperature of from 60 to 180°C, generates a maximum heat flow in the epoxy resin composition of from 0.05 to 0.99 W/g (based on the mass of the epoxy resin composition), so that the epoxy resin composition cures fully.
  3. Use or method according to any of the preceding claims, characterised in that the epoxy resin composition has a layer thickness of at least 4 mm, in particular at least 10 mm and most particularly preferably of at least 20 mm.
  4. Use or method according to at least one of the preceding claims, characterised in that there is used as the epoxy resin at least one epoxy resin from the group of the epoxy resins based on glycidyl polyether of 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), its bromine-substituted derivative (tetrabromobisphenol A), glycidyl polyether of 2,2-bis(4-hydroxyphenyl)-methane (bisphenol F) and/or glycidyl polyether of novolak resins.
  5. Use or method according to at least one of the preceding claims, characterised in that there are used as the N,N'-(dimethyl)-urones of the general formula (I) bis[4-(N,N-dimethylurea)-cyclohexyl]methane (H12MDI-urone), 1,1'-hexamethylenebis[3,3-dimethylurea] (HDI-urone), N,N"-1,5-naphthalenediylbis[N',N'-dimethylurea] (NDI-urone), 1,1'-m-xylylenebis(3,3-dimethylurea) (MXDI-urone), N,N"-1,4-phenylenebis[N',N'-dimethylurea] (PDI-urone), 4,4'-methylenediphenylene bis(dimethylurea) (MDI-urone) and/or 1-(N,N-dimethylurea)-3-(N,N-dimethylureamethyl)-3,5,5-trimethylcyclohexane (IPDI-urone).
  6. Use or method according to at least one of the preceding claims, characterised in that at least two different N,N'-(dimethyl)-urones of the general formula (I) are used as curing agent.
  7. Use or method according to at least one of the preceding claims, characterised in that the epoxy resin composition comprises from 0.01 to 10 wt.% (based on the mass of the epoxy resin composition) N,N'-(dimethyl)-urone according to formula (I) or mixtures thereof.
  8. Use or method according to at least one of the preceding claims for the production of mouldings, in particular hollow articles, having a layer thickness or wall of from 4 to mm.
  9. Epoxy resin composition for the production of mouldings, comprising a) at least one curable epoxy resin, and b) at least one curing agent for epoxy resins selected from the group of the bis- or multi-functional N,N'-(dimethyl)-urones of the general formula (I) or mixtures thereof

            R-(NH-CO-N(CH3)2)n     Formula (I)

    wherein R = a linear or branched aliphatic radical, or
    a cycloaliphatic radical, or
    an unsubstituted, halo-substituted and/or alkyl-substituted aromatic radical, and n = a number from 2 to 20, wherein the epoxy resin composition does not comprise any further curing agents, co-curing agents, curing accelerators or other catalysts for the curing of epoxy resins apart from the curing agent from the group of the N,N'-(dimethyl)-urones of the general formula (I) or mixtures thereof, and wherein the epoxy resin composition comprises the curing agent from the group of the N,N'-(dimethyl)-urones of the general formula (I) or mixtures thereof in an amount that, during curing of the epoxy resin composition at a temperature of from 60 to 180°C, generates a maximum heat flow in the epoxy resin composition of from 0.05 to 0.99 W/g (based on the mass of the epoxy resin composition), so that the epoxy resin composition cures fully.
  10. Epoxy resin composition according to claim 9, characterised in that the curable epoxy resin is selected from the group of the epoxy resins based on glycidyl polyether of 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), its bromine-substituted derivative (tetrabromobisphenol A), glycidyl polyether of 2,2-bis(4-hydroxyphenyl)-methane (bisphenol F) and/or glycidyl polyether of novolak resins.
  11. Epoxy resin composition according to either claim 9 or claim 10, characterised in that the epoxy resin composition comprises from 0.01 to 10 wt.% (based on the mass of the epoxy resin composition) N,N'-(dimethyl)-urone according to formula (I) or mixtures thereof.
  12. Composite material or moulding comprising a reinforcing and/or carrier material and an epoxy resin composition according to any of claims 9 to 11.
EP.1A -11-15 -11-14 Use of n,n'-(dimethyl) urons and method for curing epoxy resin compositions Active EPB1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title SIT SIT1 (en) -11-15 -11-14 Use of n,n'-(dimethyl) urons and method for curing epoxy resin compositions PLT PLT3 (en) -11-15 -11-14 Use of n,n'-(dimethyl) urons and method for curing epoxy resin compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title DEA DEA1 (en) -11-15 -11-15 Use of N, N '(-dimethyl) -units and methods for curing epoxy resin compositions PCT/EP/ WOA1 (en) -11-15 -11-14 Use of n,n'-(dimethyl) urons and method for curing epoxy resin compositions

Publications (2)

Publication Number Publication Date EPA1 EPA1 (en) -09-24 EPB1 true EPB1 (en) -05-06

Family

ID=

Family Applications (1)

Application Number Title Priority Date Filing Date EP.1A Active EPB1 (en) -11-15 -11-14 Use of n,n'-(dimethyl) urons and method for curing epoxy resin compositions

Country Status (15)

Country Link US (1) USB2 (en) EP (1) EPB1 (en) JP (1) JPB2 (en) KR (1) KRB1 (en) CN (1) CNB (en) AU (1) AUB2 (en) CA (1) CAC (en) DE (1) DEA1 (en) DK (1) DKT3 (en) ES (1) EST3 (en) IN (1) INKNA (en) MX (1) MXB (en) PL (1) PLT3 (en) SI (1) SIT1 (en) WO (1) WOA1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party Publication number Priority date Publication date Assignee Title DEA1 (en) -01-26 -07-28 Alzchem Trostberg Gmbh Storage Stable Epoxy Resin Composition (II)

Families Citing this family (4)

* Cited by examiner, † Cited by third party Publication number Priority date Publication date Assignee Title DEA1 (en) -05-18 -11-24 Alzchem Trostberg Gmbh Semicarbazone for curing epoxy resins DEA1 (en) -11-15 -05-16 Alzchem Ag Alkyl or dialkyl semicarbazones as hardeners for epoxy resins GBB (en) -08-13 -11-27 Hexcel Composites Ltd Urea derivatives and their use as curatives and curative accelerators for resin systems GBA (en) -03-17 -09-25 Hexcel Composites Ltd Use of hydroxy substituted urones as cure accelerators

Family Cites Families (46)

* Cited by examiner, † Cited by third party Publication number Priority date Publication date Assignee Title USA (en) -12-19 -07-18 Monsanto Chemicals Diureides and method for their preparation USA (en) -09-13 -09-20 Asahi Chemical Ind Compositions and methods of stabilizing unsaturated organic nitriles USA (en) -01-14 -06-04 American Cyanamid Co Substituted ureas as low temperature epoxy curing agents USA (en) -10-13 -07-08 Lubrizol Corp Novel epoxy curing agents GBA (en) * -12-30 -05-29 Ciba Ltd Epoxide Resin Compositions FRA (en) * -04-19 -06-13 USA (en) -05-14 -08-21 Stauffer Chemical Co Arylidene semicarbazones and their utility as herbicides USA (en) * -06-22 -02-20 Hitco Curable epoxy resin composition containing a substituted diurea compound USA (en) -10-07 -01-29 Hitco Epoxy curing agent BEA (en) -02-09 -08-07 Philips Nv BENZYLIDENE-SEMICARBAZIDE COMPOUNDS AND THEIR INSECTICIDAL ACTIVITY DEA1 (en) -07-25 -02-07 Bayer Ag Alpha-cyano-hydrazones preparation - with pre and post-emergence herbici-dal activity CHA5 (en) -04-20 -07-29 Ciba Geigy Ag EPOXY RESIN, HARDENER AND HARDENING ACCELERATOR CONTAINING, STORAGEABLE HOMOGENEOUS MIXTURE AND THE USE THEREOF FOR THE PRODUCTION OF HARDENED PRODUCTS. USA (en) -04-30 -11-23 Sumitomo Chemical Company, Limited Curable composition JPSA (en) -05-11 -11-15 Sumitomo Metal Mining Co Ltd Electrically conductive resin paste JPSA (en) -06-30 -01-21 Showa Denko Kk Semicarbazide and semicarbazone derivative and herbicide SUA1 (en) * -05-08 -08-23 Ленинградский Технологический Институт Им.Ленсовета Pulverulent compound for obtaining foam plastic USA (en) * -07-08 -04-17 Amoco Corporation Thermosetting composition comprising cyanate ester, urea compound and epoxy resin USA (en) * -07-08 -02-14 Amoco Corporation Cyanate ester with urea latent cure accelerator SUA1 (en) -07-04 -06-30 Научно-производственное объединение "Полимерклей" Adhesive composition ATET1 (en) -11-21 -04-15 Ciba Geigy Ag CURABLE EPOXY RESIN MIXTURES CONTAINING A LATENT HARDENER, AN AMINE AND A THIOL. USA (en) -11-29 -08-27 Advanced Products, Inc. Conductive adhesive useful for bonding a semiconductor die to a conductive support base EST3 (en) -06-16 -10-01 Nihon Nohyaku Co Ltd DERIVATIVES OF HYDRAZINCARBOXAMIDE, A PROCEDURE FOR THE PRODUCTION OF THE SAME, AND USES OF THE SAME. JPHA (en) * -08-02 -03-24 Mitsui Petrochem Ind Ltd Adhesive for hermetic sealing of electronic part and junction member EPA1 (en) * -12-18 -06-22 Ciba-Geigy Ag Aromatic urea compound used as hardening accelerator for a composition of epoxy resin and dicyandiamide FIL (en) * -04-07 -10-08 Leonid Nikolayev Machliakovski Powder composition for coatings GBB (en) * -04-28 -09-02 Hodogaya Chemical Co Ltd Cure-accelerator for epoxy resin CAA1 (en) * -05-29 -11-29 Eiki Togashi A method of injection-molding for epoxy resin moldings and an injection-moldable epoxy resin composition JPHA (en) * -05-01 -11-17 Nippon Seiko Kk Dynamic pressure bearing TWB (en) -10-14 -12-11 Toray Industries Thermosetting resin composition for carbon-fiber reinforced composite material JPA (en) * -01-27 -08-11 Toshiba Corp Dynamic pressure bearing motor JPA (en) * -07-27 -02-13 Koyo Seiko Co Ltd Resin molded object, method for molding the same and mold therefor JPA (en) * -02-27 -09-16 Kyocera Chemical Corp Epoxy resin composition and sealed semiconductor device DEA1 (en) -05-30 -12-16 Degussa Ag Use of urea derivatives as accelerators for epoxy resins JPA (en) * -09-01 -03-16 Ntn Corp Shaft member for dynamic-pressure bearing device JPA (en) * -11-30 -06-15 Nichias Corp Conductive epoxy resin composition and method for producing the same EPA1 (en) * -04-04 -10-11 3M Innovative Properties Company Reinforcement Pad DEA1 (en) -12-02 -06-06 Degussa Ag Use of 1- (N'-cyanoguanyl) derivatives of N-containing five-membered heterocycles as curing agents for epoxy resin compositions JPB2 (en) * -02-22 -02-06 ニチアス株式会社 Resin composition for fuel cell separator and fuel cell separator ATET1 (en) * -07-17 -04-15 Sika Technology Ag ADHESION PROMOTER COMPOUNDS FOR OILED STEEL JPB2 (en) * -08-01 -10-30 ニチアス株式会社 Resin composition for fuel cell separator and fuel cell separator EPB1 (en) * -03-31 -05-10 Cytec Technology Corp. Water based non-chromated primers for structural bonding applications USB2 (en) -09-11 -12-13 Air Products And Chemicals, Inc. Low temperature curable epoxy compositions containing urea curatives JPB2 (en) * -10-01 -08-06 株式会社Adeka Silicon wafer adhesive resin composition CNA (en) * -12-25 -05-19 广州擎天实业有限公司 Pure epoxy powder coating for coating bakelite board and preparation method thereof DEA1 (en) -05-18 -11-24 Alzchem Trostberg Gmbh Semicarbazone for curing epoxy resins DEA1 (en) -11-15 -05-16 Alzchem Ag Alkyl or dialkyl semicarbazones as hardeners for epoxy resins
    • -11-15 DE DEA patent/DEA1/en not_active Withdrawn
    • -11-14 WO PCT/EP/ patent/WOA1/en active Application Filing
    • -11-14 EP EP.1A patent/EPB1/en active Active
    • -11-14 ES ES.1T patent/EST3/en active Active
    • -11-14 SI SIT patent/SIT1/en unknown
    • -11-14 JP JPA patent/JPB2/en not_active Expired - Fee Related
    • -11-14 US US14/357,030 patent/USB2/en active Active
    • -11-14 PL PLT patent/PLT3/en unknown
    • -11-14 IN IN896KON patent/INKNA/en unknown
    • -11-14 AU AUA patent/AUB2/en not_active Ceased
    • -11-14 DK DK.1T patent/DKT3/en active
    • -11-14 KR KRA patent/KRB1/en not_active Expired - Fee Related
    • -11-14 CA CAA patent/CAC/en not_active Expired - Fee Related
    • -11-14 CN CN.0A patent/CNB/en not_active Expired - Fee Related
    • -11-14 MX MXA patent/MXB/en active IP Right Grant

Cited By (2)

* Cited by examiner, † Cited by third party Publication number Priority date Publication date Assignee Title DEA1 (en) -01-26 -07-28 Alzchem Trostberg Gmbh Storage Stable Epoxy Resin Composition (II) WOA1 (en) -01-26 -08-04 Alzchem Trostberg Gmbh Storage-stable epoxy resin composition

Also Published As

Publication number Publication date CAC (en) -11-12 SIT1 (en) -08-31 MXB (en) -10-30 DEA1 (en) -05-16 EPA1 (en) -09-24 JPA (en) -12-11 KRA (en) -08-27 USA1 (en) -12-04 DKT3 (en) -08-03 CNA (en) -07-09 MXA (en) -05-30 JPB2 (en) -01-31 PLT3 (en) -10-30 CNB (en) -08-24 USB2 (en) -05-30 AUA1 (en) -06-05 EST3 (en) -06-18 AUB2 (en) -11-12 KRB1 (en) -03-27 CAA1 (en) -05-23 WOA1 (en) -05-23 INKNA (en) -10-09

Similar Documents

Publication Publication Date Title EPB1 (en) -05-06 Novel curing agents for epoxy resins EPB2 (en) -09-22 Curable composition comprising 2,5-bisaminomethylfurane EPB1 (en) -09-07 Liquid hardeners for hardening epoxide resins (i) EPB1 (en) -05-06 Use of n,n'-(dimethyl) urons and method for curing epoxy resin compositions EPA2 (en) -03-01 Use of urea derivatives as accelerators for epoxy resins CNB (en) -05-10 Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material DEB4 (en) -08-10 Process for the preparation of a molding material EPB1 (en) -08-30 Storage-stable epoxy resin composition EPA2 (en) -12-02 2,2',6,6'-tetramethyl-4,4'-methylene-bis(cyclohexylamine) as a hardener for epoxy resins DEA1 (en) -05-12 Use of guanidine derivatives as curing accelerator for epoxy resins DEA1 (en) -08-23 Liquid hardener useful e.g. for hardening of hardenable polymer resins, preferably epoxy resins, comprises cyanamide and at least one urea derivative EPB1 (en) -09-06 Alkyl or dialkyl-semicarbazones as a hardeners for epoxy resin EPA1 (en) -06-28 Storage-stable epoxy resin composition WOA1 (en) -08-06 Liquid curing composition for curing polymer resins (ii) WOA1 (en) -06-14 N,n'-diaminopropyl-2-methylcyclohexane -1,3-diamine and n,n'-diaminopropyl-4-methylcyclohexane -1,3-diamine and the use thereof as curing agents for epoxy resins DEA1 (en) -01-25 Process for producing an epoxy resin composition for pre-impregnation of materials DEA1 (en) -07-30 Liquid hardener composition for curing polymer resins (II) DEA1 (en) -05-15 Liquid curing agent useful for curing polymer resins, preferably curable polymer resins comprising epoxide resins, preferably impregnated fiber materials or impregnated fabrics, comprises cyanamide, urea derivative, and viscosity modifier

Legal Events

Date Code Title Description -08-22 PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE:

-09-24 17P Request for examination filed

Effective date:

-09-24 AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

-11-15 GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

-11-15 GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

-11-28 GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

-12-24 DAX Request for extension of the european patent (deleted) -12-24 INTG Intention to grant announced

Effective date:

-03-28 GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

-04-11 GRAA (expected) grant

Free format text: ORIGINAL CODE:

-05-06 AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

-05-06 REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

-05-15 REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

Ref country code: CH

Ref legal event code: EP

-06-03 REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

-08-03 REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date:

-08-19 REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

-10-26 REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

-10-30 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

-10-30 REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

-11-19 REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

-11-30 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

-01-29 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

-02-29 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

-03-11 PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE:

-03-11 STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

-04-13 26N No opposition filed

Effective date:

-06-30 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

If you want to learn more, please visit our website N,N’-Dimethyl Urea Wholesale.

Effective date:

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

-11-18 REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

-05-31 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

-06-30 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date:

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

-08-31 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

-11-21 REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

-06-29 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

-10-31 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date:

-04-17 REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ALZCHEM TROSTBERG GMBH

Effective date:

Ref country code: NL

Ref legal event code: PD

Owner name: ALZCHEM TROSTBERG GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF LEGAL ENTITY; FORMER OWNER NAME: ALZCHEM AG

Effective date:

-05-31 REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: ALZCHEM TROSTBERG GMBH; DE

Effective date:

-06-05 REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: ALZCHEM TROSTBERG GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT DE NOM DU PROPRIETAIRE; FORMER OWNER NAME: ALZCHEM AG

Effective date:

-01-31 PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date:

Year of fee payment: 10

Ref country code: NL

Payment date:

Year of fee payment: 10

Ref country code: FR

Payment date:

Year of fee payment: 10

Ref country code: DK

Payment date:

Year of fee payment: 10

Ref country code: GB

Payment date:

Year of fee payment: 10

Ref country code: CZ

Payment date:

Year of fee payment: 10

Ref country code: TR

Payment date:

Year of fee payment: 10

-02-28 PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date:

Year of fee payment: 10

Ref country code: CH

Payment date:

Year of fee payment: 10

Ref country code: BE

Payment date:

Year of fee payment: 10

-04-04 PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date:

Year of fee payment: 10

-06-01 PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date:

Year of fee payment: 10

-06-19 REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date:

-06-30 REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

-07-05 REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date:

-07-12 P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date:

-07-26 GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date:

-07-27 REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date:

-07-31 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:

-08-31 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:

-08-31 REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date:

-10-31 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:

-11-30 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:

-01-02 REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date:

-01-22 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:

-01-31 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:

-05-31 PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:

-01-10 PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date:

Year of fee payment: 13

-01-23 PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date:

Year of fee payment: 13

-01-28 PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date:

Year of fee payment: 13

For more information, please visit High Purity N,N’-Dimethyl Urea.