Investigation Effect of Fiber Type on Compressive Strength of Concrete

14 Mar.,2024

 

Keywords:

glass fiber, PVA Fiber, steel fiber, compressive strength, fiber reinforced concrete

Fiber reinforced concrete is widely preferred by both the scholars and professionals all over the world. Fiber incorporation aims to develop both mechanical and durability properties of concrete. As some of the fibers such as steel has a rigid structure in nature while other types namely; glass, polypropylene are quire flexible. Inclusion of fiber in a concrete mixture has a direct effect over the concrete matrix. The properties of fiber-matrix combination in fresh state of concrete are dependent upon the amount , type and form of the fiber, matrix constituent and the method of mixing the fiber. In this study impact of various fibers on concrete compressive strength was investigated. 0.5%,1.0%, 1.5%, 2.0% fiber by weight was utilized in the concrete mixtures. The results are promising and successful in terms of compressive strength and compressive strength after frezze and thaw cycles. Durability of concrete is vital for the utilization of concrete as concrete is exposed to the severe environments in various places. Hence, any concrete is required to have certain level of durability. Fiber incorporation is widely preferred practice for purpose of improving those properties.Steel,glass and PVA fiber inclusion contribute the freeze-thaw resistance of concrete mixtures. The fiber type impact is vital and obvious though.

References

[1] M.D.I. Khan, M.A. Abdy Sayyed, G.S. Yadav, S.H. Varma, The impact of fly ash and structural fiber on the mechanical properties of concrete, Mater. Today Proc. (2020) 0–4. doi:10.1016/j.matpr.2020.08.242.
[2] S.A. Yildizel, M.E. Yiǧit, G. Kaplan, Glass fibre reinforced concrete rebound optimization, C. - Comput. Model. Eng. Sci. 113 (2017) 211–227.
[3] S.A. Yildizel, B.A. Tayeh, G. Calis, Experimental and modelling study of mixture design optimisation of glass fibre-reinforced concrete with combined utilisation of Taguchi and Extreme Vertices Design Techniques, J. Mater. Res. Technol. 9 (2020) 2093–2106. doi:10.1016/j.jmrt.2020.02.083.
[4] S.N. Karaburc, S.A. Yildizel, G.C. Calis, Evaluation of the basalt fiber reinforced pumice lightweight concrete, Mag. Civ. Eng. 94 (2020). doi:10.18720/MCE.94.7.
[5] M. Cao, C. Xie, J. Guan, Fracture behavior of cement mortar reinforced by hybrid composite fi ber consisting of CaCO 3 whiskers and PVA-steel hybrid fi bers, Compos. Part A. 120 (2019) 172–187. doi:10.1016/j.compositesa.2019.03.002.
[6] J. Topic, Z. Prošek, K. Indrová, T. Plachý, V. Nežerka, L. Kopecký, P. Tesárek, Effect of PVA modification on the properties of cement composites, Acta Polytech. (2015). doi:10.14311/AP.2015.55.0064.
[7] S. Lee, C. Lee, Prediction of shear strength of FRP-reinforced concrete flexural members without stirrups using artificial neural networks, Eng. Struct. 61 (2014) 99–112. doi:10.1016/j.engstruct.2014.01.001.
[8] P.K. Mallick, Fiber reinforced composites: materials, manufaturing and design, 2008. doi:10.1016/j.engfracmech.2008.09.002.
[9] U.S. Yilmaz, I. Saritas, M. Kamanli, M.Y. Kaltakci, An experimental study of steel fibre reinforced concrete columns under axial load and modeling by ANN, Sci. Res. Essays. 5 (2010) 81–92.
[10] A.M. Brandt, Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering, Compos. Struct. 86 (2008) 3–9. doi:10.1016/j.compstruct.2008.03.006.
[11] R.S.P. Coutts, A review of Australian research into natural fibre cement composites, Cem. Concr. Compos. 27 (2005) 518–526. doi:10.1016/j.cemconcomp.2004.09.003.
[12] D.C. Johnston, Fiber-Reinforced Cements and Concretes, Taylor & Francis, London, 2010.
[13] A.D. De Figueiredo, M.R. Ceccato, Workability analysis of steel fiber reinforced concrete using slump and ve-be test, Mater. Res. 18 (2015) 1284–1290. doi:10.1590/1516-1439.022915.
[14] Q. Cao, Y. Cheng, M. Cao, Q. Gao, Workability, strength and shrinkage of fiber reinforced expansive self-consolidating concrete, Constr. Build. Mater. 131 (2017) 178–185. doi:10.1016/j.conbuildmat.2016.11.076.
[15] Z. Hongbo, Z. Haiyun, G. Hongxiang, Characteristics of ductility enhancement of concrete by a macro polypropylene fiber, Results Mater. (2020) 100087. doi:10.1016/j.rinma.2020.100087.
[16] J.C. Walraven, High performance fiber reinforced concrete: Progress in knowledge and design codes, Mater. Struct. Constr. 42 (2009) 1247–1260. doi:10.1617/s11527-009-9538-3.
[17] H. Singh, Steel Fiber Reinforced Concrete Behavior, Modelling and Design, 2017. http://www.jsce.or.jp/committee/concrete/e/newsletter/newsletter05/JSCE-VIFCEA Joint Seminar Papers.htm%0Ahttp://pubsindex.trb.org/view.aspx?id=25485.
[18] S. Teng, V. Afroughsabet, C.P. Ostertag, Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete, Constr. Build. Mater. 182 (2018) 504–515. doi:10.1016/j.conbuildmat.2018.06.158.
[19] X. Liu, Q. Sun, Y. Yuan, L. Taerwe, Comparison of the structural behavior of reinforced concrete tunnel segments with steel fiber and synthetic fiber addition, Tunn. Undergr. Sp. Technol. 103 (2020) 103506. doi:10.1016/j.tust.2020.103506.
[20] H. Huang, Y. Yuan, W. Zhang, R. Hao, J. Zeng, Bond properties between GFRP bars and hybrid fiber-reinforced concrete containing three types of artificial fibers, Constr. Build. Mater. 250 (2020) 118857. doi:10.1016/j.conbuildmat.2020.118857.
[21] M. Khan, M. Cao, M. Ali, Effect of basalt fibers on mechanical properties of calcium carbonate whisker-steel fiber reinforced concrete, Constr. Build. Mater. 192 (2018) 742–753. doi:10.1016/j.conbuildmat.2018.10.159.
[22] N. Algourdin, P. Pliya, A.L. Beaucour, A. Simon, A. Noumowé, Influence of polypropylene and steel fibres on thermal spalling and physical-mechanical properties of concrete under different heating rates, Constr. Build. Mater. 259 (2020) 119690. doi:10.1016/j.conbuildmat.2020.119690.
[23] J. Fan, A. Shen, Y. Guo, M. Zhao, X. Yang, X. Wang, Evaluation of the shrinkage and fracture properties of hybrid Fiber-Reinforced SAP modified concrete, Constr. Build. Mater. 256 (2020) 119491. doi:10.1016/j.conbuildmat.2020.119491.
[24] V. Afroughsabet, L. Biolzi, T. Ozbakkaloglu, High-performance fiber-reinforced concrete : a review, Springer US, 2016. doi:10.1007/s10853-016-9917-4.
[25] I. Hussain, B. Ali, T. Akhtar, M.S. Jameel, S.S. Raza, Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene), Case Stud. Constr. Mater. 13 (2020) e00429. doi:10.1016/j.cscm.2020.e00429.
[26] D.Y. Yoo, M.J. Kim, High energy absorbent ultra-high-performance concrete with hybrid steel and polyethylene fibers, Constr. Build. Mater. 209 (2019) 354–363. doi:10.1016/j.conbuildmat.2019.03.096.
[27] Y. Zhou, Y. Xiao, A. Gu, G. Zhong, S. Feng, Orthogonal experimental investigation of steel-PVA fiber-reinforced concrete and its uniaxial constitutive model, Constr. Build. Mater. 197 (2019) 615–625. doi:10.1016/j.conbuildmat.2018.11.203.
[28] H. Wu, X. Lin, A. Zhou, A review of mechanical properties of fibre reinforced concrete at elevated temperatures, Cem. Concr. Res. 135 (2020) 106117. doi:10.1016/j.cemconres.2020.106117.
[29] M.S. Ammari, M. Bederina, B. Belhadj, A. Merrah, Effect of steel fibers on the durability properties of sand concrete with barley straws, Constr. Build. Mater. 264 (2020) 120689. doi:10.1016/j.conbuildmat.2020.120689.
[30] M. Abid, X. Hou, W. Zheng, R.R. Hussain, High temperature and residual properties of reactive powder concrete – A review, Constr. Build. Mater. 147 (2017) 339–351. doi:10.1016/j.conbuildmat.2017.04.083.
[31] P. Bishetti, Glass Fiber Reinforced Concrete, Int. J. Civ. Eng. 6 (2019) 23–26. doi:10.14445/23488352/ijce-v6i6p105.
[32] Y.I. Murthy, A. Sharda, G. Jain, Performance of Glass Fiber Reinforced Concrete, 1 (2012) 246–248.
[33] E. Kern, H. Schorn, Steel Fiber Reinforced Concrete, Beton- Und Stahlbetonbau. 86 (1991) 205–208. doi:10.1002/best.199100380.
[34] U.J. Alengaram, N.B. Ghazali, M.Z. Jumaat, S. Yusoff, I.I. Bashar, A. Islam, Influence of steel fibers on the mechanical properties and impact resistance of lightweight geopolymer concrete, Constr. Build. Mater. 152 (2017) 964–977. doi:10.1016/j.conbuildmat.2017.06.092.
[35] N.A. Libre, M. Shekarchi, M. Mahoutian, P. Soroushian, Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice, Constr. Build. Mater. 25 (2011) 2458–2464. doi:10.1016/j.conbuildmat.2010.11.058.
[36] U.J. Alengaram, N.B. Ghazali, M.Z. Jumaat, S. Yusoff, I.I. Bashar, A. Islam, Influence of steel fibers on the mechanical properties and impact resistance of lightweight geopolymer concrete, Constr. Build. Mater. 152 (2017) 964–977. doi:10.1016/j.conbuildmat.2017.06.092.
[37] K.H. Mo, K.H. Yeoh, I.I. Bashar, U.J. Alengaram, M.Z. Jumaat, Shear behaviour and mechanical properties of steel fibre-reinforced cement-based and geopolymer oil palm shell lightweight aggregate concrete, Constr. Build. Mater. 148 (2017) 369–375. doi:10.1016/j.conbuildmat.2017.05.017.
[38] A.J. Hamad, Size and shape effect of specimen on the compressive strength of HPLWFC reinforced with glass fibres, J. King Saud Univ. - Eng. Sci. 29 (2017) 373–380. doi:10.1016/j.jksues.2015.09.003.
[39] M.M. Hilles, M.M. Ziara, Mechanical behavior of high strength concrete reinforced with glass fiber, Eng. Sci. Technol. an Int. J. (2019) 1–9. doi:10.1016/j.jestch.2019.01.003.
[40] G. Pinheiro, J. Paulo, D. Oliveira, L.G. Gómez-mascaraque, M. José, V. Guimarães, R. Zavareze, A. López-rubio, Electrospun β -carotene – loaded SPI : PVA fi ber mats produced by emulsion- electrospinning as bioactive coatings for food packaging, Food Packag. Shelf Life. 23 (2020) 100426. doi:10.1016/j.fpsl.2019.100426.
[41] Z. Wang, F. Yan, H. Pei, K. Yan, Z. Cui, B. He, Environmentally-friendly halloysite nanotubes @ chitosan / polyvinyl alcohol / non-woven fabric hybrid membranes with a uniform hierarchical porous structure for air fi ltration, J. Memb. Sci. 594 (2020) 117445. doi:10.1016/j.memsci.2019.117445.
[42] L. Sun, Q. Hao, J. Zhao, D. Wu, F. Yang, Stress strain behavior of hybrid steel-PVA fiber reinforced cementitious composites under uniaxial compression, Constr. Build. Mater. 188 (2018) 349–360. doi:10.1016/j.conbuildmat.2018.08.128.
[43] Y. Xu, Y. Xu, C. Sun, L. Zou, J. He, The preparation and characterization of plasticized PVA fi bres by a novel Glycerol / Pseudo Ionic Liquids system with melt spinning method, Eur. Polym. J. 133 (2020) 109768. doi:10.1016/j.eurpolymj.2020.109768.
[44] A.M. Fahad, W. Mingxue, C. Jianyong, Z. Huapeng, Study on PVA fiber surface modification for strain-hardening cementitious composites ( PVA-SHCC ), Constr. Build. Mater. 197 (2019) 107–116. doi:10.1016/j.conbuildmat.2018.11.072.
[45] S. Bentur, A., Mindness, Cementitious Composites, 2nd ed., Taylor & Francis, Boca Raton London New York, 2007.
[46] C. Li, Victor, Wang, S, Wu, Tensile strain-hardening behavior of PVA-ECC, ACI Mater. J. 98 (2001).
[47] Q. Wang, M.H. Lai, J. Zhang, Z. Wang, J.C.M. Ho, Greener engineered cementitious composite ( ECC ) – The use of pozzolanic fillers and unoiled PVA fibers, 247 (2020). doi:10.1016/j.conbuildmat.2020.118211.
[48] M.A. Hannan, F.A. Azidin, A. Mohamed, Hybrid electric vehicles and their challenges: A review, Renew. Sustain. Energy Rev. (2014). doi:10.1016/j.rser.2013.08.097.
[49] S.R. Abid, M.S. Shamkhi, N.S. Mahdi, Y.H. Daek, Hydro-abrasive resistance of engineered cementitious composites with PP and PVA fibers, Constr. Build. Mater. 187 (2018) 168–177. doi:10.1016/j.conbuildmat.2018.07.194.
[50] S. Kang, J. Choi, K. Koh, K. Seok, B. Yeon, Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete, Compos. Struct. 145 (2016) 37–42. doi:10.1016/j.compstruct.2016.02.075.
[51] Y. Ling, P. Zhang, J. Wang, Y. Chen, Effect of PVA fiber on mechanical properties of cementitious composite with and without nano-SiO 2, Constr. Build. Mater. 229 (2019) 117068. doi:10.1016/j.conbuildmat.2019.117068.
[52] A. Noushini, B. Samali, K. Vessalas, Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete, Constr. Build. Mater. (2013). doi:10.1016/j.conbuildmat.2013.08.035.
[53] T.P. Sathishkumar, S. Satheeshkumar, J. Naveen, Glass fiber-reinforced polymer composites - A review, J. Reinf. Plast. Compos. (2014). doi:10.1177/0731684414530790.
[54] J. Liu, Y. Jia, J. Wang, Experimental Study on Mechanical and Durability Properties of Glass and Polypropylene Fiber Reinforced Concrete, Fibers Polym. 20 (2019) 1900–1908. doi:10.1007/s12221-019-1028-9.

If you have any questions on PVA fibre. We will give the professional answers to your questions.