Synthesizing Chiral Drug Intermediates by Biocatalysis

23 Oct.,2023

 

  1. Agresti, J. J., Antipov, E., Abate, A. R., Ahn, K., Rowat, A. C., Baret, J.-C., Marquez, M., Klibanov, A. M., Griffiths, A. D., & Weitz, D. A. (2010). Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proceedings of the National Academy of Sciences of the United States of America, 107, 4004–4009.

  2. Anderson, B. A., Hansen, M. M., Harkness, A. R., Henry, C. L., Vicenzi, J. T., & Zmijewski, M. J. (1996). Application of a practical biocatalytic reduction to an enantioselective synthesis of the 5H-2,3-benzodiazepine LY300164. Journal of the American Chemical Society, 117, 12358–12359.

  3. Ang EL, Oscar A., Behrouzian B, et al.2016. Biocatalysts and methods for the synthesis of armodafinil, US20160264945 A1 .

  4. Antranikian, G., Vorgias, C. E., & Bertoldo, C. (2005). Extreme environments as a resource for microorganisms and novel biocatalysts. Marine Biotechnology, 1, 219–262.

  5. Augé, C., David, S., & Gautheron, C. (1984). Synthesis with immobilized enzyme of the most important sialic acid. Tetrahedron Letters, 25, 4663–4664.

  6. Banerjee, A., Ko, R. Y., Howell, J. M., Li, W. S., & Partyka, R. A. (1994). Enzymic preparation of (3R-cis)-3-(acetyloxy)-4-phenyl-2-azetidinone: a taxol side-chain synthon. Biotechnology and Applied Biochemistry, 20, 23–33.

  7. Barrish, J. C., Gordon, E., Alam, M., Lin, P. F., Bisacchi, G. S., Chen, P., Cheng, P. T., Fritz, A. W., Greytok, J. A., & Hermsmeier, M. A. (1994). Aminodiol HIV protease inhibitors. 1. Design, synthesis, and preliminary SAR. Journal of Medicinal Chemistry, 37, 1758–1768.

  8. Basch, J., Chiang, S., Liu, S., Nayeem, A. and Sun, Y. (2004) The epothilone B hydroxylase and ferredoxin genes of Amycolatopsis and their use in the development of strains for the manufacture of hydroxylated epothilones. PCT Int. Appl.

  9. Beerens, K., Desmet, T., & Soetaert, W. (2012). Enzymes for the biocatalytic production of rare sugars. Journal of Industrial Microbiology & Biotechnology, 39, 823–834.

  10. Begley, T. P., & Tsai, M. D. (2003). Biocatalysis and biotransformation enzymology in the genomics era. Current Opinion in Chemical Biology, 7, 228–229.

  11. Benigni, D., Tully, T. P. and Davis, B. L. (2011). Methods for the preparation, isolation and purification of epothilone B, and X-ray crystal structures of epothilone B. Google Patents.

  12. Berenguer-Murcia, A., & Fernandez-Lafuente, R. (2010). New trends in the recycling of NAD(P)H for the design of sustainable asymmetric reductions catalyzed by dehydrogenases. Current Organic Chemistry, 14, 1000.

  13. Bold, G., Fassler, A., Capraro, H. G., Cozens, R., Klimkait, T., Lazdins, J., Mestan, J., Poncioni, B., Rosel, J., Stover, D., Tintelnot-Blomley, M., Acemoglu, F., Beck, W., Boss, E., Eschbach, M., Hurlimann, T., Masso, E., Roussel, S., Ucci-Stoll, K., Wyss, D., & Lang, M. (1998). New aza-dipeptide analogues as potent and orally absorbed HIV-1 protease inhibitors: candidates for clinical development. Journal of Medicinal Chemistry, 41, 3387.

  14. Bommarius, A. S. and Riebel-Bommarius, B. R. (2004). Biocatalysis: fundamentals and applications. ed. John Wiley & Sons.

  15. Bong, Y. K., Clay, M.D., Collier, S. J., Mijts, B., Vogel, M., Zhang, X., Zhu, J., Nazor, J., Smith, D., Song, S. (2013). Synthesis of prazole compounds.

  16. Bornscheuer, U. T. (2005). in Biotechnology for the future, Springer, 181-203.

  17. Bornscheuer, U. T., & Buchholz, K. (2010). Highlights in biocatalysis-historical landmarks and current trends. Engineering in Life Sciences, 5, 309–323.

  18. Bornscheuer, U. T., Kazlauskas, R. J. (2006). Hydrolases in organic synthesis: regio-and stereoselective biotransformations. ed. John Wiley & Sons.

  19. Bosshart, A., Wagner, N., Lei, L., Panke, S., & Bechtold, M. (2016). Highly efficient production of rare sugars d-psicose and l-tagatose by two engineered d-tagatose epimerases. Biotechnology and Bioengineering, 113, 349–358.

  20. Bowers, N. I., Skonezny, P. M., Stein, G. L., Franceschini, T., Chiang, S. J., Anderson, W. L., You, L., Xing, Z. (2008). A process for preparing (2R,3S)-1,2-epoxy-3-(protected)amino-4-substituted butane and intermediates thereof.

  21. Brustad, E. M., & Arnold, F. H. (2011). Optimizing non-natural protein function with directed evolution. Current Opinion in Chemical Biology, 15, 201–210.

  22. Buchholz, K., Kasche, V. and Bornscheuer, U. T. (2012). Biocatalysts and enzyme technology. ed. John Wiley & Sons.

  23. Buckland, B. C., Drew, S. W., Connors, N. C., Chartrain, M. M., Lee, C., Salmon, P. M., Gbewonyo, K., Zhou, W., Gailliot, P., Singhvi, R., Olewinski Jr., R. C., Sun, W. J., Reddy, J., Zhang, J., Jackey, B. A., Taylor, C., Goklen, K. E., Junker, B., & Greasham, R. L. (1999). Microbial conversion of indene to indandiol: a key intermediate in the synthesis of CRIXIVAN. Metabolic Engineering, 1, 63–74.

  24. Buckland, B. C., Robinson, D. K., & Chartrain, M. (2000). Biocatalysis for pharmaceuticals--status and prospects for a key technology. Metabolic Engineering, 2, 42–48.

  25. Bujara, M., Schümperli, M., Billerbeck, S., Heinemann, M., & Panke, S. (2010). Exploiting cell-free systems: implementation and debugging of a system of biotransformations. Biotechnology and Bioengineering, 106, 376–389.

  26. Burton, S. G., Cowan, D. A., & Woodley, J. M. (2002). The search for the ideal biocatalyst. Nature Biotechnology, 20, 37–45.

  27. Cao, L. (2005). Immobilised enzymes: science or art? Current Opinion in Chemical Biology, 9, 217–226.

  28. Cao, L., Schmid, R. (2005). D. Carrier-bound immobilized enzymes. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany.

  29. Carballeira, J., Quezada, M., Hoyos, P., Simeó, Y., Hernaiz, M., Alcantara, A., & Sinisterra, J. (2009). Microbial cells as catalysts for stereoselective red–ox reactions. Biotechnology Advances, 27, 686–714.

  30. Chartrain, M., Lynch, J., Choi, W. B., Churchill, H., Patel, S., Yamazaki, S., Volante, R., & Greasham, R. (2000). Asymmetric bioreduction of a bisaryl ketone to its corresponding (S)-bisaryl alcohol, by the yeast Rhodotorula pilimanae ATCC 32762. J Mol Catal B-Enzym, 8, 285–288.

  31. Chaturvedula, P. V., Chen, L., Civiello, R., Degnan, A. P., Dubowchik, G. M., Han, X., Jiang, X. J. J., Karageorge, G. N., Luo, G. and Macor, J. E. (2007). Calcitonin gene related peptide receptor antagonists. Google Patents.

  32. Chaturvedula, P. V. D., G M., Degan, A. P., Han, X., Conway, D., Cook, C., Davis, R., Denton, R., Macci, N. R., Mathias, S., Pin, L., Signor, G., Thalody, R., Schartman, K. A., Widmann, C., Xu, C., Macor, J. E. (2007). Abstracts of papers; 234th National Meeting of the American Chemical Society, Boston, MA, August 19 23, American Chemical Society: Washington.

  33. Chmura, A., Rustler, S., & Paravidino, M. (2013). The combi-CLEA approach: enzymatic cascade synthesis of enantiomerically pure (S)-mandelic acid. Tetrahedron-Asymmetry, 24, 1225–1232.

  34. Chou, C.-J., Shockley, K. R., Conners, S. B., Lewis, D. L., Comfort, D. A., Adams, M. W. W., & Kelly, R. M. (2007). Impact of substrate glycoside linkage and elemental sulfur on bioenergetics of and hydrogen production by the hyperthermophilic archaeon Pyrococcus furiosus. Applied and Environmental Microbiology, 73, 6842–6853.

  35. Claps, P., & Garrabou, X. (2011). Current trends in asymmetric synthesis with aldolases. Advanced Synthesis and Catalysis, 353, 2263–2283.

  36. Crasto, C. J., & Feng, J.-a. (2000). LINKER: a program to generate linker sequences for fusion proteins. Protein Engineering, 13, 309–312.

  37. Crowe, M., Foulkes, M., Francese, G., Grimler, D., Kuesters, E., Laumen, K., Li, Y., Lin, C., Nazor, J., & Ruch, T. (2015). Chemical process for preparing spiroindolones and intermediates thereof. WO.

  38. Davis, S., Grate, J., Gray, D., Gruber, J., Huisman, G., Ma, S., Newman, L., Sheldon, R. and Wang, L. (2004). Halohydrin dehalogenases and method for production of 4-cyano-3-hydroxybutyric acid esters and amides. United States Patent Appl.

  39. Davis, S. C., Grate, J. H., Gray, D. R., Gruber, J. M., Huisman, G. W., Ma, S. K., Newman, L. M., Sheldon, R., Wang, L. A. (2006). Enzymatic processes for the production of 4-substituted 3-hydroxybutyric acid derivatives. Google Patents.

  40. Dawson, M. (1997). PCT WO. 9429476. 1994.

  41. de Carvalho, C. C. (2011). Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnology Advances, 29, 75–83.

  42. de Graaff, C., Bensch, L., Boersma, S. J., Cioc, R. C., van Lint, M. J., Janssen, E., Turner, N. J., Orru, R. V. A., & Ruijter, E. (2015). Asymmetric synthesis of tetracyclic pyrroloindolines and constrained tryptamines by a switchable cascade reaction. Angewandte Chemie (International Ed. in English), 54, 14133–14136.

  43. Denard, C. A., Hartwig, J. F., & Zhao, H. (2013). Multistep one-pot reactions combining biocatalysts and chemical catalysts for asymmetric synthesis. ACS Catalysis, 3, 2856–2864.

  44. Deninno, M. P. (1991). The synthesis and glycosidation of N-acetylneuraminic acid. Synthesis, 1991, 583–593.

  45. Dennig, A., Busto, E., Kroutil, W., & Faber, K. (2015). Biocatalytic one-pot synthesis of l-tyrosine derivatives from monosubstituted benzenes, pyruvate, and ammonia. ACS Catalysis, 5, 1–5.

  46. DeSantis, G., Zhu, Z., Greenberg, W. A., Wong, K., Chaplin, J., Hanson, S. R., Farwell, B., Nicholson, L. W., Rand, C. L., & Weiner, D. P. (2002). An enzyme library approach to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives. Journal of the American Chemical Society, 124, 9024–9025.

  47. DeSantis, G., Wong, K., Farwell, B., Chatman, K., Zhu, Z., Tomlinson, G., Huang, H., Tan, X., Bibbs, L., & Chen, P. (2003). Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). Journal of the American Chemical Society, 125, 11476–11477.

  48. DiCosimo, R. (2007). Nitrilases and nitrile hydratases (pp. 1–26). Boca Raton: CRC Press.

  49. Dingler, C., Ladner, W., Krei, G. A., Cooper, B., & Hauer, B. (2015). Preparation of (R)-2-(4-hydroxyphenoxy) propionic acid by biotransformation. Pesticide Science, 46, 33–35.

  50. Doswald, S., Estermann, H., Kupfer, E., Stadler, H., Walther, W., Weisbrod, T., Wirz, B., & Wostl, W. (1994). Large scale preparation of chiral building blocks for the P 3 site of renin inhibitors. Bioorganic & Medicinal Chemistry, 2, 403–410.

  51. Dourado, D. F. A. R., Pohle, S., Carvalho, A. T. P., Dheeman, D. S., Caswell, J. M., Skvortsov, T., Miskelly, I., Brown, R. T., Quinn, D. J., & Allen, C. C. R. (2016). Rational design of a (S)-selective-transaminase for asymmetric synthesis of (1S)-1-(1,1'-biphenyl 2-yl)ethanamine. ACS Catalysis, 6, 7749–7759.

  52. Dragovich, P. S., Prins, T. J., Zhou, R., Webber, S. E., Marakovits, J. T., Fuhrman, S. A., Patick, A. K., Matthews, D. A., Lee, C. A., & Ford, C. E. (1999). Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 4. Incorporation of P1 lactam moieties as L-glutamine replacements. Journal of Medicinal Chemistry, 42, 1213–1224.

  53. Drauz, K., Gröger, H. and May, O. (2012). Enzyme catalysis in organic synthesis: a comprehensive handbook. John Wiley & Sons.

  54. Evans, C. T., Roberts, S. M., Shoberu, K. A., & Sutherland, A. G. (1992). Potential use of carbocyclic nucleosides for the treatment of AIDS: chemo-enzymatic syntheses of the enantiomers of carbovir. Journal of the Chemical Society, Perkin Transactions, 589–592.

  55. Faber, K. (2011). Biotransformations in organic chemistry: a textbook.Springer Science & Business Media.

  56. Federsel, H. J. (2005). Asymmetry on large scale: the roadmap to stereoselective processes. Cheminform, 36, 685–697.

  57. Ferenci, P., Brunner, H., Nachbaur, K., Datz, C., Gschwantler, M., Hofer, H., Stauber, R., Hackl, F., Jessner, W., & Rosenbeiger, M. (2001). Combination of interferon induction therapy and ribavirin in chronic hepatitis C. Hepatology, 34, 1006–1011.

  58. Ferralli, P., & a., John Duick Egan, a. and Floyd Lester Erickson, a. (2007). Making Taq DNA polymerase in the undergraduate biology laboratory. Bios, 69.

  59. Ferris, C. D., Hirsch, D. J., Brooks, B. P., & Snyder, S. H. (1991). σ receptors: from molecule to man. Journal of Neurochemistry, 57, 729.

  60. Fonseca, T. d. S., Silva, M. R. d., de Oliveira, M. d. C. F., Lemos, T. L. G. d., Marques, R. d. A., & de Mattos, M. C. (2015). Chemoenzymatic synthesis of rasagiline mesylate using lipases. Appl Catal A, 492, 76–82.

  61. Frock, A. D., Notey, J. S., & Kelly, R. M. (2010). The genus thermotoga: recent developments. Environmental Technology, 31, 1169.

  62. Gao, S., Zhu, S., Huang, R., Lu, Y., & Zheng, G. (2015). Efficient synthesis of the intermediate of abacavir and carbovir using a novel (+)-γ-lactamase as a catalyst. Bioorganic & Medicinal Chemistry Letters, 25, 3878–3881.

  63. Gerth, K., Pradella, S., Perlova, O., Beyer, S., & Müller, R. (2003). Myxobacteria: proficient producers of novel natural products with various biological activities-past and future biotechnological aspects with the focus on the genus Sorangium. Journal of Biotechnology, 106, 233–253.

  64. Ghislieri, D., Green, A. P., Pontini, M., Willies, S. C., Rowles, I., Frank, A., Grogan, G., & Turner, N. J. (2013). Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products. Journal of the American Chemical Society, 135, 10863–10869.

  65. Gill, I., & Patel, R. (2006). Biocatalytic ammonolysis of (5S)-4, 5-dihydro-1H-pyrrole-1, 5-dicarboxylic acid, 1-(1, 1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin. Bioorganic & Medicinal Chemistry Letters, 16, 705–709.

  66. Gilligan, P. J., Clarke, T., He, L., Lelas, S., Li, Y.-W., Heman, K., Fitzgerald, L., Miller, K., Zhang, G., & Marshall, A. (2009). Synthesis and structure-activity relationships of 8-(pyrid-3-yl) pyrazolo [1, 5-a]-1, 3, 5-triazines: potent, orally bioavailable corticotropin releasing factor receptor-1 (CRF1) antagonists. Journal of Medicinal Chemistry, 52, 3084–3092.

  67. Goldberg, S. L., Nanduri, V. B., Chu, L., Johnston, R. M., & Patel, R. N. (2006). Enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl] butyl]-8-azaspiro [4.5] decane-7, 9-dione: cloning and expression of reductases. Enzyme and Microbial Technology, 39, 1441–1450.

  68. Goldberg, S., Guo, Z., Chen, S., Goswami, A., & Patel, R. N. (2008). Synthesis of ethyl-(3R,5S)-dihydroxy-6-benzyloxyhexanoates via diastereo- and enantioselective microbial reduction: cloning and expression of ketoreductase III from Acinetobacter sp. SC 13874. Enzyme and Microbial Technology, 43, 544–549.

  69. Gordon, E. M., Ondetti, M. A., Pluscec, J., Cimarusti, C. M., Bonner, D. P. and Sykes, R. B. (1983). ChemInform abstract: O-sulfated β-lactam hydroxamic acids (monosulfactams). novel monocyclic β-lactam antibiotics of synthetic origin. J Am Chem Soc, 14, no-no.

  70. Goswami, A., & Kissick, T. P. (2009). Enzymatic desymmetrization of dimethyl cylcohex-4-ene-cis-1, 2-dicarboxylate to (1 S, 2 R)-2-(methoxycarbonyl) cyclohex-4-ene-1-carboxylic acid. Organic Process Research and Development, 13, 483–488.

  71. Gotor, V. (1999). Non-conventional hydrolase chemistry: amide and carbamate bond formation catalyzed by lipases. Bioorganic & Medicinal Chemistry, 7, 2189–2197.

  72. Gotor-Fernandez, V., & Gotor, V. (2006). Enzymatic aminolysis and ammonolysis processes in the preparation of chiral nitrogenated compounds. Current Organic Chemistry, 10, 1125–1143.

  73. Gotor-Fernández, V., Brieva, R., & Gotor, V. (2006). Lipases: eseful biocatalysts for the preparation of pharmaceuticals. Journal of Molecular Catalysis B: Enzymatic, 40, 111–120.

  74. Guo, Z., Goswami, A., Mirfakhrae, K. D., & Patel, R. N. (1999). Asymmetric acyloin condensation catalyzed by phenylpyruvate decarboxylase. Tetrahedron-Asymmetry, 10, 4667–4675.

  75. Guo, Z., Chen, Y., Goswami, A., Hanson, R. L., & Patel, R. N. (2006). Synthesis of ethyl and t-butyl (3R,5S)-dihydroxy-6-benzyloxy hexanoates via diastereo- and enantioselective microbial reduction. Tetrahedron-Asymmetry, 17, 1589–1602.

  76. Gupta, A., Tschentscher, A. and Bobkova, M. (2008). 2-butanol production method. US.

  77. Gustafsson, D., Elg, M., Lenfors, S., Börjesson, I., & Teger-Nilsson, A. (1996). Effects of inogatran, a new low-molecular-weight thrombin inhibitor, in rat models of venous and arterial thrombosis, thrombolysis and bleeding time. Blood Coagulation Fibrinolysis, 7, 69–79.

  78. Hailes, H., Richter, N., Simon, R. C., Kroutil, W., & Ward, J. M. (2014). Synthesis of pharmaceutically relevant 17-[small alpha]-amino steroids using an [small omega]-transaminase. Chemical Communications, 50, 6098–6100.

  79. Hanefeld, U., Gardossi, L., & Magner, E. (2009). Understanding enzyme immobilisation. Chemical Society Reviews, 38, 453–468.

  80. Hansen, K. B., Hsiao, Y., Xu, F., Rivera, N., Clausen, A., Kubryk, M., Krska, S., Rosner, T., Simmons, B., & Balsells, J. (2009). Highly efficient asymmetric synthesis of sitagliptin. Journal of the American Chemical Society, 131, 8798–8804.

  81. Hanson, R. L., Singh, J., Kissick, T. P., Patel, R. N., Szarka, L. J., & Mueller, R. H. (1990). Synthesis of l -β-hydroxyvaline from α-keto-β-hydroxyisovalerate using leucine dehydrogenase from Bacillus species. Bioorganic Chemistry, 18, 116–130.

  82. Hanson, R. L., Schwinden, M. D., Banerjee, A., Brzozowski, D. B., Chen, B.-C., Patel, B. P., McNamee, C. G., Kodersha, G. A., Kronenthal, D. R., & Patel, R. N. (1999). Enzymatic synthesis of L-6-hydroxynorleucine. Bioorganic & Medicinal Chemistry, 7, 2247–2252.

  83. Hanson, R. L., Goldberg, S., Goswami, A., Tully, T. P., & Patel, R. N. (2005). Purification and cloning of a ketoreductase used for the preparation of chiral alcohols. Advanced Synthesis and Catalysis, 347, 1073.

  84. Hanson, R. L., Goldberg, S. L., Brzozowski, D. B., Tully, T. P., Cazzulino, D., Parker, W. L., Lyngberg, O. K., Vu, T. C., Wong, M. K., & Patel, R. N. (2007). Preparation of an amino acid intermediate for the dipeptidyl peptidase IV inhibitor, saxagliptin, using a modified phenylalanine dehydrogenase. Advanced Synthesis and Catalysis, 349, 1369–1378.

  85. Hanson, R. L., Davis, B. L., Chen, Y., Goldberg, S. L., Parker, W. L., Tully, T. P., Montana, M. A., & Patel, R. N. (2008). Preparation of (R)-amines from racemic amines with an (S)-amine transaminase from Bacillus megaterium. Advanced Synthesis and Catalysis, 350, 1367–1375.

  86. Hanson, R. L., Davis, B. L., Goldberg, S. L., Johnston, R. M., Parker, W. L., Tully, T. P., Montana, M. A., & Patel, R. N. (2008). Enzymatic preparation of a D-amino acid from a racemic amino acid or keto acid. Org Proc Res Dev, 12, 1119–1129.

  87. Hauptmann, J. (2002). Pharmacokinetics of an emerging new class of anticoagulant/antithrombotic drugs. European Journal of Clinical Pharmacology, 57, 751–758.

  88. Herbert, R. A. (1992). A perspective on the biotechnological potential of extremophiles. Trends in Biotechnology, 10, 395–402.

  89. Herman, G. A., Bergman, A., Yi, B., Kipnes, M., & Group, S. S. (2006). Tolerability and pharmacokinetics of metformin and the dipeptidyl peptidase-4 inhibitor sitagliptin when co-administered in patients with type 2 diabetes. Current Medical Research and Opinion, 22, 1939–1947.

  90. Herter, S., McKenna, S. M., Frazer, A. R., Leimkühler, S., Carnell, A. J., & Turner, N. J. (2015). Galactose oxidase variants for the oxidation of amino alcohols in enzyme cascade synthesis. ChemCatChem, 7, 2313.

  91. Hold, C., & Panke, S. (2009). Towards the engineering of in vitro systems. J R Soc Interface, 6(Suppl 4), S507–S521.

  92. Hollmann, F., Arends, I. W. C. E., Buehler, K., Schallmey, A., & Bühler, B. (2011). Enzyme-mediated oxidations for the chemist. Green Chemistry, 13, 226–265.

  93. Hollmann, F., Arends, I. W. C. E., & Holtmann, D. (2011). Enzymatic reductions for the chemist. Green Chemistry, 13, 2285–2314.

  94. Holton, R., Biediger, R., Joatman, P. (1995) Semisynthesis of taxol and taxotere. In Taxol: Science and Application; Suffness, M., CRC press: NewYork, pp. 97–123.

  95. Homann, M. J., Vail, R., Morgan, B., Sabesan, V., Levy, C., Dodds, D. R., & Zaks, A. (2001). Enzymatic hydrolysis of a prochiral 3-substituted glutarate ester, an intermediate in the synthesis of an NK1/NK2 dual antagonist. Advanced Synthesis and Catalysis, 343, 744–749.

  96. Hossain, M. A., Kitagaki, S., Nakano, D., Nishiyama, A., Funamoto, Y., Matsunaga, T., Tsukamoto, I., Yamaguchi, F., Kamitori, K., & Dong, Y. (2011). Rare sugar D-psicose improves insulin sensitivity and glucose tolerance in type 2 diabetes Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biochemical and Biophysical Research Communications, 405, 7–12.

  97. Hough, D. W., & Danson, M. J. (1999). Extremozymes. Current Opinion in Chemical Biology, 3, 39–46.

  98. Hu, H., Qian, J., Chu, J., Wang, Y., Zhuang, Y., & Zhang, S. (2009). DNA shuffling of methionine adenosyltransferase gene leads to improved S-adenosyl-l-methionine production in Pichia pastoris. Journal of Biotechnology, 141, 97–103.

  99. Huang, X., Garcia-Borràs, M., Miao, K., Kan, S. J., Zutchi, A., Houk, K. N. and Arnold, F. H. (2019). A biocatalytic platform for synthesis of chiral α-trifluoromethylated organoborons. ACS Central Science.

  100. Huisman, G. W., & Collier, S. J. (2013). On the development of new biocatalytic processes for practical pharmaceutical synthesis. Current Opinion in Chemical Biology, 17, 284–292.

  101. Huisman, G. W. and Lalonde, J. J. (2007). 30 enzyme evolution for chemical process applications.

  102. Huisman, G. W., Liang, J., & Krebber, A. (2010). Practical chiral alcohol manufacture using ketoreductases. Current Opinion in Chemical Biology, 14, 122–129.

  103. Ishige, T., Honda, K., & Shimizu, S. (2005). Whole organism biocatalysis. Current Opinion in Chemical Biology, 9, 174–180.

  104. Ising, M., Zimmermann, U. S., Künzel, H. E., Uhr, M., Foster, A. C., Learned-Coughlin, S. M., Holsboer, F., & Grigoriadis, D. E. (2007). High-affinity CRF1 receptor antagonist NBI-34041: preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response. Neuropsychopharmacology, 32, 1941–1949.

  105. Iwata, H., Tanaka, R., & Ishiguro, M. (1990). Structures of the alkaline hydrolysis products of penem antibiotic, SUN5555. The Journal of Antibiotics, 43, 901–903.

  106. Jagoda, E., Stouffer, B., Ogan, M., Tsay, H. M., Turabi, N., Mantha, S., Yost, F., & Tu, J. I. (1993). Radioimmunoassay for hydroxyphosphinyl-3-hydroxybutanoic acid (SQ 33,600), a hypocholesterolemia agent. Therapeutic Drug Monitoring, 15, 213–219.

  107. Jajoo, H., Mayol, R., LaBudde, J., & Blair, I. (1989). Metabolism of the antianxiety drug buspirone in human subjects. Drug Metabolism and Disposition, 17, 634–640.

  108. Jiang, W., & Fang, B.-S. (2016). Construction and evaluation of a novel bifunctional phenylalanine–formate dehydrogenase fusion protein for bienzyme system with cofactor regeneration. Journal of Industrial Microbiology & Biotechnology, 43, 1–8.

  109. Jiang, W., & Fang, B. (2016). Construction of a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates. Scientific Reports, 6, 30462–30462.

  110. Johanson, T., Carlquist, M., Olsson, C., Rudolf, A., Frejd, T., & Gorwagrauslund, M. F. (2008). Reaction and strain engineering for improved stereo-selective whole-cell reduction of a bicyclic diketone. Applied Microbiology and Biotechnology, 77, 1111–1118.

  111. Junien, J. L., & Leonard, B. E. (1989). Drugs acting on sigma and phencyclidine receptors: a review of their nature, function, and possible therapeutic importance. Clinical Neuropharmacology, 12, 353–374.

  112. Justin, B. S., Alexandre, Z., Helena, M. L., Gert, K., Abigail, R. L., Jennifer, L. S. C., Jasmine, L. G., Donald, H., Michael, H. G., Barry, L. S., Kendall, N. H., Forrest, E. M., & David, B. (2010). Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science, 309.

  113. Kaluzna, I. A., Feske, B. D., Wittayanan, W., Ghiviriga, I., & Stewart, J. D. (2005). Stereoselective, biocatalytic reductions of alpha-chloro-beta-keto esters. The Journal of Organic Chemistry, 70, 342–345.

  114. Kataoka, M., Kotaka, A., Thiwthong, R., Wada, M., Nakamori, S., & Shimizu, S. (2004). Cloning and overexpression of the old yellow enzyme gene of Candida macedoniensis, and its application to the production of a chiral compound. Journal of Biotechnology, 114, 1–9.

  115. Kazlauskas, R. J. (2005). Enhancing catalytic promiscuity for biocatalysis. Current Opinion in Chemical Biology, 9, 195–201.

  116. Kim, M. J., Hennen, W. J., Sweers, H. M., & Chi, H. W. (1988). Enzymes in carbohydrate synthesis: N-acetylneuraminic acid aldolase catalyzed reactions and preparation of N-acetyl-2-deoxy-D-neuraminic acid derivatives. Journal of the American Chemical Society, 110, 6481–6468.

  117. Kingston, D. (1995). Natural taxoids: structure and chemistry. In M. Suffness (Ed.), Taxol: science and application (pp. 287–317). New York: CRC press.

  118. Kizaki, N., Yasohara, Y., Hasegawa, J., Wada, M., Kataoka, M., & Shimizu, S. (2001). Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Applied Microbiology and Biotechnology, 55, 590–595.

  119. Kobayashi, S., Kamiyama, K., Iimori, T., & Ohno, M. (1984). Creation of novel chiral synthons with enzymes and applications to natural product synthesis. 15. Efficient introduction of chiral centers into cyclohexane ring. Tetrahedron Letters, 25, 2557–2560.

  120. Köhler, V., Bailey, K. R., Znabet, A., Raftery, J., Helliwell, M., & Turner, N. J. (2010). Enantioselective biocatalytic oxidative desymmetrization of substituted pyrrolidines. Angewandte Chemie, International Edition, 49, 2182–2184.

  121. Kosjek, B., Ntigyabaah, J., Telari, K., Dunne, L., & Moore, J. C. (2008). Preparative asymmetric synthesis of 4,4-dimethoxytetrahydro-2H-pyran-3-ol with a ketone reductase and in situ cofactor recycling using glucose dehydrogenase. Organic Process Research and Development, 12, 584–588.

  122. Koszelewski, D., Clay, D., Rozzell, D., & Kroutil, W. (2009). Deracemisation of α-chiral primary amines by a one-pot, two-step cascade reaction catalysed by ω-transaminases. European Journal of Organic Chemistry, 2009, 2289–2292.

  123. Kragl, U., Gygax, D., Ghisalba, O., & Wandrey, C. (1991). Enzymatic two-step synthesis of N-acetyl-neuraminic acid in the enzyme membrane reactor. Angewandte Chemie, International Edition, 30, 827–828.

  124. Kragl, U., Vasic-Racki, D., & Wandrey, C. (1996). Continuous production of L-tert-leucine in series of two enzyme membrane reactors. Bioprocess Engineering, 14, 291–297.

  125. Krulewicz, B., Tschaen, D., Devine, P., Lee, S. S., Roberge, C., Greasham, R., & Chartrain, M. (2009). Asymmetric biosynthesis of key aromatic intermediates in the synthesis of an endothelin receptor antagonist. Biocatalysis and Biotransformation, 19, 267–279.

  126. Landis, B. H., Mclaughlin, J. K., Heeren, R., And, R. W. G., & Wang, P. T. (2002). Bioconversion of N-butylglucamine to 6-deoxy-6-butylamino sorbose by Gluconobacter oxydans. Organic Process Research and Development, 6, 547–552.

  127. Lauria-Horner, B. A., & Pohl, R. B. (2003). Pregabalin: a new anxiolytic. Expert Opinion on Investigational Drugs, 12, 663–672.

  128. Lee, M., & Rhee, M. K. (2015). Sitagliptin for type 2 diabetes: a 2015 update. Exp Rev Cardiovasc Ther, 13, 597–610.

  129. Lelas, S., Wong, H., Li, Y.-W., Heman, K. L., Ward, K. A., Zeller, K. L., Sieracki, K. K., Polino, J. L., Godonis, H. E., & Ren, S. X. (2004). Anxiolytic-like effects of the corticotropin-releasing factor1 (CRF1) antagonist DMP904 [4-(3-pentylamino)-2, 7-dimethyl-8-(2-methyl-4-methoxyphenyl)-pyrazolo-[1, 5-a]-pyrimidine] administered acutely or chronically at doses occupying central CRF1 receptors in rats. The Journal of Pharmacology and Experimental Therapeutics, 309, 293–302.

  130. Li, T., Liang, J., Ambrogelly, A., Brennan, T., Gloor, G., Huisman, G., Lalonde, J., Lekhal, A., Mijts, B., Muley, S., Newman, L., Tobin, M., Wong, G., Zaks, A., & Zhang, X. (2012). Efficient, chemoenzymatic process for manufacture of the Boceprevir bicyclic [3.1.0]proline intermediate based on amine oxidase-catalyzed desymmetrization. Journal of the American Chemical Society, 134, 6467–6472.

  131. Liang, J., Mundorff, E., Voladri, R., Jenne, S., Gilson, L., Conway, A., Krebber, A., Wong, J., Huisman, G., & Truesdell, S. (2010). Highly enantioselective reduction of a small heterocyclic ketone: biocatalytic reduction of tetrahydrothiophene-3-one to the corresponding (R)-alcohol. Organic Process Research and Development, 14, 188–192.

  132. Liese, A., Seelbach, K. and Wandrey, C. (2006). Industrial biotransformations. John Wiley & Sons.

  133. Limanto, J., Ashley, E. R., Yin, J., Beutner, G. L., Grau, B. T., Kassim, A. M., Kim, M. M., Klapars, A., Liu, Z., Strotman, H. R., & Truppo, M. D. (2014). A highly efficient asymmetric synthesis of vernakalant. Organic Letters, 16, 2716–2719.

  134. Liu, W., Ma, H., Luo, J., Shen, W., Xu, X., Li, S., Hu, Y., & Huang, H. (2014). Efficient synthesis of l- tert-leucine through reductive amination using leucine dehydrogenase and formate dehydrogenase coexpressed in recombinant E. coli. Biochemical Engineering Journal, 91, 204–209.

  135. Luo, X., Wang, Y.-J., & Zheng, Y.-G. (2015). Cloning and characterization of a NADH-dependent aldo-keto reductase from a newly isolated Kluyveromyces lactis XP1461. Enzyme and Microbial Technology, 77, 68–77.

  136. Luo, X., Wang, Y.-J., Shen, W., & Zheng, Y.-G. (2016). Activity improvement of a Kluyveromyces lactis aldo-keto reductase KlAKR via rational design. Journal of Biotechnology, 224, 20–26.

  137. Lutz, S., & Bornscheuer, U. T. (2012). Protein engineering handbook (ed ed.). John Wiley & Sons.

  138. Ma, S. K., Gruber, J., Davis, C., Newman, L., Gray, D., Wang, A., Grate, J., Huisman, G. W., & Sheldon, R. A. (2010). A green-by-design biocatalytic process for atorvastatin intermediate. Green Chemistry, 12, 81–86.

  139. Mahmoudian, M. D., & M., J. (1997). In W. R. Strohl (Ed.), Biotechnology of anti-biotics (2nd ed., p. 753). New York: Marcel Dekker Inc..

  140. Mahmoudian, M., Noble, D., Drake, C., Middleton, R., Montgomery, D., Piercey, J., Ramlakhan, D., Todd, M., & Dawson, M. (1997). An efficient process for production of N-acetylneuraminic acid using N-acetylneuraminic acid aldolase. Enzyme and Microbial Technology, 20, 393–400.

  141. Mahmoudian, M., Lowdon, A., Jones, M., Dawson, M., & Wallis, C. (1999). A practical enzymatic procedure for the resolution of N-substituted 2-azabicyclo [2.2. 1] hept-5-en-3-one. Tetrahedron-Asymmetry, 10, 1201–1206.

  142. Manfred T. R. (2016). Directed evolution of selective enzymes: catalysts for organic chemistry and biotechnology ed. John Wiley & Sons.

  143. Matsumae, H., Furui, M., & Shibatani, T. (1993). Lipase-catalyzed asymmetric hydrolysis of 3-phenylglycidic acid ester, the key intermediate in the synthesis of diltiazem hydrochloride. Journal of Fermentation and Bioengineering, 75, 93–98.

  144. Mayol, R. F. (2000). Anxiety method. Google Patents.

  145. McTaggart, F., Buckett, L., Davidson, R., Holdgate, G., McCormick, A., Schneck, D., Smith, G., & Warwick, M. (2001). Preclinical and clinical pharmacology of rosuvastatin, a new 3-hydroxy- 3-methylglutaryl coenzyme A reductase inhibitor11CRESTOR is a trademark, the property of AstraZeneca PLC. Research discussed in this article was supported by AstraZeneca. The American Journal of Cardiology, 87, 28–32.

  146. Menzel, A., Werner, H., Altenbuchner, J., & Gröger, H. (2004). From enzymes to “designer bugs” in reductive amination: a new process for the synthesis of l-tert-leucine using a whole cell-catalyst. Engineering in Life Sciences, 4, 573–576.

  147. Merviel, P., Najas, S., Campy, H., Floret, S., & Brasseur, F. (2005). Use of GNRH antagonists in reproductive medicine. Minerva Ginecolog, 57, 29–43.

  148. Merz, A., Yee, M. C., Szadkowski, H., Pappenberger, G., Crameri, A., Stemmer, W. P., Yanofsky, C., & Kirschner, K. (2000). Improving the catalytic activity of a thermophilic enzyme at low temperatures. Biochemistry, 39, 880–889.

  149. Moriguchi, M., & Ideta, K. (1988). Production of d-aminoacylase from Alcaligenes denitrificans subsp. xylosoxydans MI-4. Applied and Environmental Microbiology, 54, 2767–2770.

  150. Munchhof, M. J., Li, Q., Shavnya, A., Borzillo, G. V., Boyden, T. L., Jones, C. S., Lagreca, S. D., Martinezalsina, L., Patel, N., & Pelletier, K. (2011). Discovery of PF-04449913, a potent and orally bioavailable inhibitor of smoothened. ACS Medicinal Chemistry Letters, 3, 106.

  151. Nanduri, V. B., Hanson, R. L., Goswami, A., Wasylyk, J. M., LaPorte, T. L., Katipally, K., Chung, H.-J., & Patel, R. N. (2001). Biochemical approaches to the synthesis of ethyl 5-(s)-hydroxyhexanoate and 5-(s)-hydroxyhexanenitrile. Enzyme and Microbial Technology, 28, 632–636.

  152. Nestl, B. M., Nebel, B. A., & Hauer, B. (2011). Recent progress in industrial biocatalysis. Current Opinion in Chemical Biology, 15, 187–193.

  153. O’Reilly, E., Iglesias, C., Ghislieri, D., Hopwood, J., Galman, J. L., Lloyd, R. C., & Turner, N. J. (2014). A regio- and stereoselective ω-transaminase/monoamine oxidase cascade for the synthesis of chiral 2,5-disubstituted pyrrolidines. Angewandte Chemie (International Ed. in English), 53, 2447.

  154. Otey, C. R., Bandara, G., Lalonde, J., Takahashi, K., & Arnold, F. H. (2006). Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochromes P450. Biotechnology and Bioengineering, 93, 494–499.

  155. Overstreet, D. H., & Griebel, G. (2004). Antidepressant-like effects of CRF1 receptor antagonist SSR125543 in an animal model of depression. European Journal of Pharmacology, 497, 49–53.

  156. Park, J. W., Lee, J. K., Kwon, T. J., Yi, D. H., Kim, Y. J., Moon, S. H., Suh, H. H., Kang, S. M., & Park, Y. I. (2003). Bioconversion of compactin into pravastatin by Streptomyces sp. Biotechnology Letters, 25, 1827–1831.

  157. Parmeggiani, F., Lovelock, S. L., Weise, N. J., Ahmed, S. T., & Turner, N. J. (2015). Synthesis of d- and l-phenylalanine derivatives by phenylalanine ammonia lyases: a multienzymatic cascade process. Angewandte Chemie, International Edition, 127, 4691–4694.

  158. Patel, R. N. (1998). Tour de paclitaxel: biocatalysis for semisynthesis. Annual Review of Microbiology, 52, 361–395.

  159. Patel, R. N. (2001). Biocatalytic synthesis of intermediates for the synthesis of chiral drug substances. Current Opinion in Biotechnology, 12, 587–604.

  160. Patel, R. N. (2006). Biocatalysis in the pharmaceutical and biotechnology industries (ed ed.). CRC press.

  161. Patel, R. N. (2006). Biocatalysis: synthesis of chiral intermediates for pharmaceuticals. Current Organic Chemistry, 10, 1289–1321.

  162. Patel, R. N. (2008). Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coordination Chemistry Reviews, 252, 659–701.

  163. Patel, R. N. (2011). Biocatalysis: synthesis of key intermediates for development of pharmaceuticals. ACS Catalysis, 1, 1056–1074.

  164. Patel, R. N. (2018). Biocatalysis for synthesis of pharmaceuticals. Bioorganic & Medicinal Chemistry, 26, 1252–1274.

  165. Patel, R. N., Robison, R. S., Szarka, L. J., Kloss, J., Thottathil, J. K., & Mueller, R. H. (1991). Stereospecific microbial reduction of 4,5-dihydro-4-(4-methoxyphenyl)-6-(trifluoromethyl-1H-1)-benzazepin+ ++-2-o ne. Enzyme and Microbial Technology, 13, 906–912.

  166. Patel, R. N., McNamee, C. G., Banerjee, A., Howell, J. M., Robison, R. S., & Szarka, L. J. (1992). Stereoselective reduction of β-keto esters by Geotrichum candidum. Enzyme and Microbial Technology, 14, 731–738.

  167. Patel, R. N., Banerjee, A., Howell, J. M., McNamee, C. G., Brozozowski, D., Mirfakhrae, D., Nanduri, V., Thottathil, J. K., & Szarka, L. J. (1993). Microbial synthesis of (2R,3S)-(−)-N-benzoyl-3-phenyl isoserine ethyl ester-a taxol side-chain synthon. Tetrahedron-Asymmetry, 4, 2069–2084.

  168. Patel, R. N., Banerjee, A., Liu, M., Hanson, R., Ko, R., Howell, J., & Szarka, L. J. (1993). Microbial reduction of 1-(4-fluorophenyl)-4-[4-(5-fluoro-2-pyrimidinyl)-1- piperazinyl]butan-1-one. Biotechnology and Applied Biochemistry, 17(Pt 2), 139.

  169. Patel, R. N., Banerjee, A., Mcnamee, C. G., Brzozowski, D., Hanson, R. L., & Szarka, L. J. (1993). Enantioselective microbial reduction of 3,5-dioxo-6-(benzyloxy) hexanoic acid, ethyl ester. Enzyme and Microbial Technology, 15, 1014–1021.

  170. Patel, R. N., Banerjee, A., Mcnamee, C. G., Brzozowski, D. B., & Szarka, L. J. (1997). Preparation of chiral synthon for HIV protease inhibitor: stereoselective microbial reduction of N-protected α-aminochloroketone. Tetrahedron-Asymmetry, 8, 2547–2552.

  171. Patel, R. N., Banerjee, A., Nanduri, V. B., Goldberg, S. L., Johnston, R. M., Hanson, R. L., McNamee, C. G., Brzozowski, D. B., Tully, T. P., & Ko, R. Y. (2000). Biocatalytic preparation of a chiral synthon for a vasopeptidase inhibitor: enzymatic conversion of N 2-[N-Phenylmethoxy) carbonyl] L-homocysteinyl]-L-lysine (1-> 1’)-disulfide to [4S-(4I, 7I, 10aJ)] 1-octahydro-5-oxo-4-[phenylmethoxy) carbonyl] amino]-7H-pyrido-[2, 1-b][1, 3] thiazepine-7-carboxylic acid methyl ester by a novel L-lysine ϵ-aminotransferase. Enzyme Microb Technol, 27, 376–389.

  172. Patel, R. N., Chu, L., Chidambaram, R., Zhu, J., & Kant, J. (2002). Enantioselective microbial reduction of 2-oxo-2-(1′,2′,3′,4′-tetrahydro-1′,1′,4′,4′-tetramethyl-6′-naphthalenyl)acetic acid and its ethyl ester. Tetrahedron-Asymmetry, 13, 349–355.

  173. Patel, R. N., Chu, L., & Mueller, R. (2003). Diastereoselective microbial reduction of ( S )-[3-chloro-2-oxo-1-(phenylmethyl)propyl]carbamic acid, 1,1-dimethylethyl ester. Tetrahedron-Asymmetry, 14, 3105–3109.

  174. Patel, R. N., Goswami, A., Chu, L., Donovan, M. J., Nanduri, V., Goldberg, S., Johnston, R., Siva, P. J., Nielsen, B., Fan, J., He, W., Shi, Z., Wang, K. Y., Eiring, R., Cazzulino, D., Singh, A., & Mueller, R. (2004). Enantioselective microbial reduction of substituted acetophenones. Tetrahedron-Asymmetry, 15, 1247–1258.

  175. Patel, R., Chu, L., Nanduri, V., Li, J., Kotnis, A., Parker, W., Liu, M., & Mueller, R. (2005). Enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl] butyl]-8-azaspiro [4.5] decane-7, 9-dione. Tetrahedron-Asymmetry, 16, 2778–2783.

  176. Patel, R. N., Chu, L. N. H., Johnson, R. M., Guo, Z., Chen, Y., Goldberg, S. L., Hanson, R. L., Goswami, A. and Katipally, K. (2008). Stereoselective reduction process for the preparation of pyrrolotriazine compounds. Google Patents.

  177. Paul, C. E., Rodriguez-Mata, M., Busto, E., Lavandera, I., Gotor-Fernandez, V., Gotor, V., Garcia-Cerrada, S., Mendiola, J., de Frutos, O., & Collado, I. (2014). Transaminases applied to the synthesis of high added-value enantiopure amines. Organic Process Research and Development, 18, 788–792.

  178. Pavlidis, I. V., Weiß, M. S., Genz, M., Spurr, P., Hanlon, S. P., Wirz, B., Iding, H., & Bornscheuer, U. T. (2016). Identification of (S)-selective transaminases for the asymmetric synthesis of bulky chiral amines. Nature Chemistry, 8, 1076–1082.

  179. Peng, Z., Wong, J. W., Hansen, E. C., Puchlopekdermenci, A. L. A., & Clarke, H. J. (2014). Development of a concise, asymmetric synthesis of a smoothened receptor (SMO) inhibitor: enzymatic transamination of a 4-piperidinone with dynamic kinetic resolution. Organic Letters, 16, 860–863.

  180. Pianko, S., & McHutchison, J. G. (2000). Treatment of hepatitis C with interferon and ribavirin. Journal of Gastroenterology and Hepatology, 15, 581–586.

  181. Pinder, R. M., Brogden, R. N., Speight, T. M., & Avery, G. S. (1977). Maprotiline: a review of its pharmacological properties and therapeutic efficacy in mental depressive states. Drugs, 13, 321.

  182. Podar, M., & Reysenbach, A.-L. (2006). New opportunities revealed by biotechnological explorations of extremophiles. Current Opinion in Biotechnology, 17, 250–255.

  183. Pollard, D. J., & Woodley, J. M. (2007). Biocatalysis for pharmaceutical intermediates: the future is now. Trends in Biotechnology, 25, 66–73.

  184. Prasad, C. V. C., Noonan, J. W., Sloan, C. P., Lau, W., Vig, S., Parker, M. F., Smith, D. W., Hansel, S. B., Polson, C. T., Barten, D. M., Felsenstein, K. M., & Roberts, S. B. (2004). Hydroxytriamides as potent γ-secretase inhibitors. Bioorganic & Medicinal Chemistry Letters, 14, 1917–1921.

  185. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62, 597–635.

  186. Manfred T. Reetz (2011). Gerichtete evolution stereoselektiver enzyme: eine ergiebige Katalysator-Quelle für asymmetrische Reaktionen[J]. Angewandte Chemie, 123(1): 144–182. Gerichtete Evolution stereoselektiver Enzyme: Eine ergiebige Katalysator-Quelle für asymmetrische Reaktionen. Angew Chem Int Ed, 123, 144–182.

  187. Reetz, M. T., Torre, C., Eipper, A., Lohmer, R., Hermes, M., Brunner, B., Maichele, A., Bocola, M., Arand, M., & Cronin, A. (2004). Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution. Organic Letters, 6, 177–180.

  188. Ricklefs, E., Girhard, M., Koschorreck, K., Smit, M. S., & Urlacher, V. B. (2015). Two-step one-pot synthesis of pinoresinol from eugenol in an enzymatic cascade. ChemCatChem, 7, 1857.

  189. Ricklefs, E., Girhard, M., & Urlacher, V. B. (2016). Three-steps in one-pot: whole-cell biocatalytic synthesis of enantiopure (+)- and (-)-pinoresinol via kinetic resolution. Microbial Cell Factories, 15, 78–78.

  190. Robert, S. S., Singh, S. P., Zhou, X. R., Petrie, J. R., Blackburn, S. I., Mansour, P. M., Nichols, P. D., Liu, Q., & Green, A. G. (2005). Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil. Func Plant Biol, 32, 473–479.

  191. Robinson, B. S., Riccardi, K. A., Gong, Y. F., Guo, Q., Stock, D. A., Blair, W. S., Terry, B. J., Deminie, C. A., Djang, F., Colonno, R. J., & Lin, P. F. (2000). BMS-232632, a highly potent human immunodeficiency virus protease inhibitor that can be used in combination with other available antiretroviral agents. Antimicrobial Agents and Chemotherapy, 44, 2093–2099.

  192. Robl, J. A., Sun, C.-Q., Stevenson, J., Ryono, D. E., Simpkins, L. M., Cimarusti, M. P., Dejneka, T., Slusarchyk, W. A., Chao, S., & Stratton, L. (1997). Dual metalloprotease inhibitors: mercaptoacetyl-based fused heterocyclic dipeptide mimetics as inhibitors of angiotensin-converting enzyme and neutral endopeptidase. Journal of Medicinal Chemistry, 40, 1570–1577.

  193. Rowles, I., Groenendaal, B., Binay, B., Malone, K. J., Willies, S. C., & Turner, N. J. (2016). Engineering of phenylalanine ammonia lyase from Rhodotorula graminis for the enhanced synthesis of unnatural l-amino acids. Tetrahedron, 72, 7343–7347.

  194. Rozzell, D., Liang, J.. (2008). Speciality Chemicals Magazine, 36.

  195. Rubin-Pitel, S. B., & Zhao, H. (2006). Recent advances in biocatalysis by directed enzyme evolution. Combinatorial Chemistry & High Throughput Screening, 9, 247–257.

  196. Salis, H. M., Mirsky, E. A., & Voigt, C. A. (2009). Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnology, 27, 946–950.

  197. Savage, S. A., Jones, G. S., Kolotuchin, S., Ramrattan, S. A., Vu, T., & Waltermire, R. E. (2009). Preparation of saxagliptin, a Novel DPP-IV Inhibitor. Organic Process Research and Development, 13, 1169–1176.

  198. Savile, C. K., Janey, J. M., Mundorff, E. C., Moore, J. C., Tam, S., Jarvis, W. R., Colbeck, J. C., Krebber, A., Fleitz, F. J., & Brands, J. (2010). Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science, 329, 305–309.

  199. Savile, C., Gruber, J. M., Mundorff, E., Huisman, G. W. and Collier, S. J. (2014). Ketoreductase polypeptides for the production of a 3-aryl-3-hydroxypropanamine from a 3-aryl-3-ketopropanamine. pp. 42-46. WO.

  200. Schenk, D., Games, D., & Seubert, P. (2001). Potential treatment opportunities for Alzheimer’s disease through inhibition of secretases and Aβ immunization. Journal of Molecular Neuroscience, 17, 259–267.

  201. Schmidt, M., Baumann, M., Henke, E., Konarzycka-Bessler, M., & Bornscheuer, U. T. (2004). Directed evolution of lipases and esterases. Methods in Enzymology, 388, 199–207.

  202. Schmidt, M., Hasenpusch, D., Kähler, M., Kirchner, U., Wiggenhorn, K., Langel, W., & Bornscheuer, U. T. (2006). Directed evolution of an esterase from Pseudomonas fluorescens yields a mutant with excellent enantioselectivity and activity for the kinetic resolution of a chiral building block. Chembiochem, 7, 805–809.

  203. Schmidt-Dannert, C., & Arnold, F. H. (1999). Directed evolution of industrial enzymes. Trends in Biotechnology, 17, 135–136.

  204. Selak, I. (2003). Pregabalin: a new anxiolytic. Current Opinion in Investigational Drugs, 12, 663–672.

  205. Shafiee, A., Motamedi, H., & King, A. (1998). Purification, characterization and immobilization of an NADPH-dependent enzyme involved in the chiral specific reduction of the keto ester M, an intermediate in the synthesis of an anti-asthma drug, Montelukast, from Microbacterium campoquemadoensis (MB5614). Applied Microbiology and Biotechnology, 49, 709.

  206. Shaw, A. J., Podkaminer, K. K., Desai, S. G., Bardsley, J. S., Rogers, S. R., Thorne, P. G., Hogsett, D. A., & Lynd, L. R. (2008). Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proceedings of the National Academy of Sciences of the United States of America, 105, 13769–13774.

  207. Sheldon, R. (1993). Chirotechnology Marcel Dekker. New York, 365.

  208. Sheldon, R. A. (2008). E factors, green chemistry and catalysis: an odyssey. Chemical Communications, 3352–3365.

  209. Sheldon, R. A., & Pereira, P. C. (2017). Biocatalysis engineering: the big picture. Chemical Society Reviews, 46, 2678–2691.

  210. Sheldon, R. A., & Woodley, J. M. (2018). Role of biocatalysis in sustainable chemistry. Chemical Reviews, 118, 801–838.

  211. Shen, Q., Zhang, Y., Yang, R., Pan, S., Dong, J., Fan, Y., & Han, L. (2016). Enhancement of isomerization activity and lactulose production of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Food Chemistry, 207, 60–67.

  212. Shin, J.-S., & Kim, B.-G. (2002). Exploring the active site of amine: pyruvate aminotransferase on the basis of the substrate structure- reactivity relationship: how the enzyme controls substrate specificity and stereoselectivity. The Journal of Organic Chemistry, 67, 2848–2853.

  213. Simeo, Y., Kroutil, W., & Faber, K. (2007). Biocatalytic deracemization: dynamic resolution, stereoinversion, enantioconvergent processes, and cyclic deracemization. Boca Raton: CRC Press.

  214. Simons, C., Hanefeld, U., Arends, I. W., Maschmeyer, T., & Sheldon, R. A. (2006). Towards catalytic cascade reactions: asymmetric synthesis using combined chemo-enzymatic catalysts. Topics in Catalysis, 40, 35–44.

  215. Solano, D. M., Hoyos, P., Hernáiz, M., Alcántara, A., & Sánchez-Montero, J. (2012). Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs. Bioresource Technology, 115, 196–207.

  216. Soriano-Maldonado, P., Las Heras-Vazquez, F. J., Clemente-Jimenez, J. M., Rodriguez-Vico, F., & Martínez-Rodríguez, S. (2015). Enzymatic dynamic kinetic resolution of racemic N-formyl- and N-carbamoyl-amino acids using immobilized L-N-carbamoylase and N-succinyl-amino acid racemase. Applied Microbiology and Biotechnology, 99, 283–291.

  217. Sousa, T., Paterson, R., Moore, V., Carlsson, A., Abrahamsson, B., & Basit, A. W. (2008). The gastrointestinal microbiota as a site for the biotransformation of drugs. International Journal of Pharmaceutics, 363, 1–25.

  218. Staebler, A., Cruz, A., van der Goot, W., Pinheiro, H. M., Cabral, J. M. S., & Fernandes, P. (2004). Optimization of androstenedione production in an organic–aqueous two-liquid phase system. Journal of Molecular Catalysis B: Enzymatic, 29, 19–23.

  219. Steinreiber, A., & Faber, K. (2001). Microbial epoxide hydrolases for preparative biotransformations. Current Opinion in Biotechnology, 12, 552–558.

  220. Suen, W. C., Zhang, N., Xiao, L., Madison, V., & Zaks, A. (2004). Improved activity and thermostability of Candida antarctica lipase B by DNA family shuffling. Protein Engineering, Design & Selection, 17, 133–140.

  221. Sumida, Y., Iwai, S., Nishiya, Y., Kumagai, S., Yamada, T., & Azuma, M. (2016). Identification and characterization of D-succinylase, and a proposed enzymatic method for D-amino acid synthesis. Advanced Synthesis and Catalysis, 358, 2041.

  222. Sun, J., Huang, J., Ding, X., & Wang, P. (2016). Efficient enantioselective biocatalytic production of a chiral intermediate of Sitagliptin by a newly filamentous fungus isolate. Applied Biochemistry and Biotechnology, 180, 695–706.

  223. Sun, H., Zhang, H., Ang, E. L., & Zhao, H. (2017). Biocatalysis for the synthesis of pharmaceuticals and pharmaceutical intermediates. Bioorganic & Medicinal Chemistry.

  224. Taché, Y., Martinez, V., Wang, L., & Million, M. (2004). CRF1 receptor signaling pathways are involved in stress-related alterations of colonic function and viscerosensitivity: implications for irritable bowel syndrome. Br J Phamacol, 141, 1321–1330.

  225. Tamarez, M., Morgan, B., Wong, G. S., Tong, W., Bennett, F., Lovey, R., McCormick, J. L., & Zaks, A. (2003). Pilot-scale lipase-catalyzed regioselective acylation of ribavirin in anhydrous media in the synthesis of a novel prodrug intermediate. Organic Process Research and Development, 7, 951–953.

  226. Tao, H., & Cornish, V. W. (2002). Milestones in directed enzyme evolution. Current Opinion in Chemical Biology, 6, 858–864.

  227. Tao, J. A., Kazlauskas, R. J. (2011). Biocatalysis for green chemistry and chemical process development. John Wiley & Sons.

  228. Tao, J., & McGee, K. (2002). Development of a continuous enzymatic process for the preparation of (R)-3-(4-fluorophenyl)-2-hydroxy propionic acid. Organic Process Research and Development, 6, 520–524.

  229. Tao, J., & Xu, J.-H. (2009). Biocatalysis in development of green pharmaceutical processes. Current Opinion in Chemical Biology, 13, 43–50.

  230. Taylor, P. P., Pantaleone, D. P., Senkpeil, R. F., & Fotheringham, I. G. (1998). Novel biosynthetic approaches to the production of unnatural amino acids using transaminases. Trends in Biotechnology, 16, 412–418.

  231. Turner, N. J. (2004). Enzyme catalysed deracemisation and dynamic kinetic resolution reactions. Current Opinion in Chemical Biology, 8, 114–119.

  232. Turner, N. J., & O'Reilly, E. (2013). Biocatalytic retrosynthesis. Nature Chemical Biology, 9, 285–288.

  233. Tyo, K. E., Alper, H. S., & Stephanopoulos, G. N. (2007). Expanding the metabolic engineering toolbox: more options to engineer cells. Trends in Biotechnology, 25, 132–137.

  234. van der Donk, W. A., & Zhao, H. (2003). Recent developments in pyridine nucleotide regeneration. Current Opinion in Biotechnology, 14, 421–426.

  235. Vedha-Peters, K., Gunawardana, M., Rozzell, J. D., & Novick, S. J. (2006). Creation of a broad-range and highly stereoselective D-amino acid dehydrogenase for the one-step synthesis of D-amino acids. Journal of the American Chemical Society, 128, 10923–10929.

  236. Velaparthi, U., Saulnier, M. G., Wittman, M. D., Liu, P., Frennesson, D. B., Zimmermann, K., Carboni, J. M., Gottardis, M., Li, A., & Greer, A. (2010). Insulin-like growth factor-1 receptor (IGF-1R) kinase inhibitors: SAR of a series of 3-[6-(4-substituted-piperazin-1-yl)-4-methyl-1H-benzimidazol-2-yl]-1H-pyridine-2-one. Bioorganic & Medicinal Chemistry Letters, 20, 3182–3185.

  237. Veronesi, B., Carter, J., Devlin, R., Simon, S., & Oortgiesen, M. (1999). Neuropeptides and capsaicin stimulate the release of inflammatory cytokines in a human bronchial epithelial cell line. Neuropeptides, 33, 447–456.

  238. Vrtis, J. M., White, A. K., Metcalf, W. W., & van der Donk, W. A. (2002). Phosphite dehydrogenase: a versatile cofactor-regeneration enzyme. Angewandte Chemie (International Ed. in English), 41, 3257–3259.

  239. Vu, T., Brzozowski, D., Fox, R., Godfrey Jr., J., Hanson, R., Kolotuchin, S., Mazzullo Jr., J., Patel, R., Wang, J., & Wong, K. (2004). Preparation of cyclopropyl-fused pyrrolidine-based inhibitors of dipeptidyl peptidase IV. Appl: PCT Int.

  240. Wagner, N., Bosshart, A., Failmezger, J., Bechtold, M., & Panke, S. (2015). A separation-integrated cascade reaction to overcome thermodynamic limitations in rare-sugar synthesis. Angewandte Chemie, 54, 4182–4186.

  241. Walsgrove, T. C., Powell, L., & Wells, A. (2002). Lotrafiban, ((2S)-7-(4,4'-Bipiperidinylcarbonyl)-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1,4-Benzodiazepine-2-acetic acid) utilising an enzymic resolution as the final step. Organic Process Research and Development, 6, 488–491.

  242. Wang, Y., & Zhao, H. (2016). Tandem reactions combining biocatalysts and chemical catalysts for asymmetric synthesis. Catalysts, 6, 194.

  243. Wang, M., Yang, R., Hua, X., Shen, Q., Zhang, W., & Zhao, W. (2015). Lactulose production from lactose by recombinant cellobiose 2-epimerase in permeabilised Escherichia coli cells. International Journal of Food Science and Technology, 50, 1625–1631.

  244. Wang-Iverson, D., Arnold, M. E., Jemal, M., & Cohen, A. I. (1992). Determination of SQ 33,600, a phosphinic acid containing HMG CoA reductase inhibitor, in human serum by high-performance liquid chromatography combined with ionspray mass spectrometry. Biological Mass Spectrometry, 21, 189–194.

  245. Wei, Y., Xia, S., He, C., Xiong, W., & Xu, H. (2016). Highly enantioselective production of a chiral intermediate of sitagliptin by a novel isolate of Pseudomonas pseudoalcaligenes. Biotechnology Letters, 38, 841–846.

  246. Weise, N. J., Parmeggiani, F., Ahmed, S. T., & Turner, N. J. (2015). The bacterial ammonia lyase EncP: a tunable biocatalyst for the synthesis of unnatural amino acids. Journal of the American Chemical Society, 137, 12977–12983.

  247. Weiwei, Z., Lough, A. J., Young Feng, L., & Morris, R. H. (2013). Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines. Science, 342, 1080–1083.

  248. Wells, A. S., Finch, G. L., Michels, P. C., & Wong, J. W. (2012). Use of enzymes in the manufacture of active pharmaceutical ingredients-A science and safety-based approach to ensure patient safety and drug quality. Organic Process Research and Development, 16, 1986–1993.

  249. Wendisch, V. F., Bott, M., & Eikmanns, B. J. (2006). Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Current Opinion in Microbiology, 9, 268–274.

  250. Wilson, Z. E., & Brimble, M. A. (2009). Molecules derived from the extremes of life. Natural Product Reports, 26, 44–71.

  251. Wiseman, A., Goldfard, P. S., Woods, L., & Ridgway, T. (2001). Novel biocatalytic enzymes by directed evolution. Trends in Biotechnology, 19, 382–382.

  252. Wittman, M., Carboni, J., Attar, R., Balasubramanian, B., Balimane, P., Brassil, P., Beaulieu, F., Chang, C., Clarke, W., & Dell, J. (2005). Discovery of a (1H-benzoimidazol-2-yl)-1H-pyridin-2-one (BMS-536924) inhibitor of insulin-like growth factor I receptor kinase with in vivo antitumor activity. Journal of Medicinal Chemistry, 48, 5639.

  253. Wong, J. W., Watson, H. A., Bouressa, J. F., Burns, M. P., Cawley, J. J., Doro, A. E., Guzek, D. B., Hintz, M. A., McCormick, E. L., Scully, D. A., Siderewicz, J. M., Taylor, W. J., Truesdell, S. J., & Wax, R. G. (2002). Biocatalytic oxidation of 2-methylquinoxaline to 2-quinoxalinecarboxylic acid. Organic Process Research and Development, 6, 477–481.

  254. Wu, G., Truksa, M., Datla, N., Vrinten, P., Bauer, J., Zank, T., Cirpus, P., Heinz, E., & Qiu, X. (2005). Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nature Biotechnology, 23, 1013–1017.

  255. Wu, S., Zhou, Y., Wang, T., Too, H.-P., Wang, D. I. C., & Li, Z. (2016). Highly regio- and enantioselective multiple oxy- and amino-functionalizations of alkenes by modular cascade biocatalysis. Nature Communications, 7, 11917–11917.

  256. Xiang, Z., Birrien, J.-L., Fouquet, Y., Cherkashov, G., Jebbar, M., Querellou, J., Oger, P., Cambon-Bonavita, M.-A., Xiang, X., & Prieur, D. (2009). Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. The ISME Journal, 3, 873.

  257. Xu, Z., Singh, J., Schwinden, M. D., Zheng, B., Kissick, T. P., Patel, B., Humora, M. J., Quiroz, F., Dong, L., & Hsieh, D.-M. (2002). Process research and development for an efficient synthesis of the HIV protease inhibitor BMS-232632. Organic Process Research and Development, 6, 323–328.

  258. Xu, G. C., Tang, M. H., & Ni, Y. (2016). Asymmetric synthesis of lipitor chiral intermediate using a robust carbonyl reductase at high substrate to catalyst ratio. Journal of Molecular Catalysis B: Enzymatic, 123, 67–72.

  259. Xu, Q., Tao, W. Y., Huang, H., & Li, S. (2016). Highly efficient synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by a novel carbonyl reductase from Yarrowia lipolytica and using mannitol or sorbitol as cosubstrate. Biochemical Engineering Journal, 106, 61–67.

  260. Xu, Z., Wang, R., Liu, C., Chi, B., Gao, J., Chen, B., & Xu, H. (2016). A new L-arabinose isomerase with copper ion tolerance is suitable for creating protein-inorganic hybrid nanoflowers with enhanced enzyme activity and stability. RSC Advances, 6, 30791–30794.

  261. Yagasaki, M., & Ozaki, A. (1998). Industrial biotransformations for the production of D-amino acids. Journal of Molecular Catalysis B: Enzymatic, 4, 1–11.

  262. Yevich, J. P., New, J. S., Lobeck, W. G., Dextraze, P., Bernstein, E., Taylor, D. P., Yocca, F. D., Eison, M. S., & Temple Jr., D. L. (1992). Synthesis and biological characterization of. alpha.-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazinebutanol and analogs as potential atypical antipsychotic agents. Journal of Medicinal Chemistry, 35, 4516–4525.

  263. YHP, Z. (2010). Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. Biotechnology and Bioengineering

  264. Yoshikawa, N., Ohta, K., Mizuno, S., & Ohkishi, H. (1993). Production of cis,cis-muconic acid from benzoic acid. Bioprocess Technology, 16, 131.

  265. Zalman, L., Brothers, M., Dragovich, P., Zhou, R., Prins, T., Worland, S., & Patick, A. (2000). Inhibition of human rhinovirus-induced cytokine production by AG7088, a human rhinovirus 3C protease inhibitor. Antimicrobial Agents and Chemotherapy, 44, 1236–1241.

  266. Zhang, N., Suen, W.-C., Windsor, W., Xiao, L., Madison, V., & Zaks, A. (2003). Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. Protein Engineering, 16, 599–605.

  267. Zhang, Y. H. P., Evans, B. R., Mielenz, J. R., Hopkins, R. C., & Adams, M. W. W. (2007). High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS One, 2, e456–e456.

  268. Zhang, Y. H. P., Sun, J., & Zhong, J.-J. (2010). Biofuel production by in vitro synthetic enzymatic pathway biotransformation. Current Opinion in Biotechnology, 21, 663–669.

  269. Zhang, Y., Gao, F., Zhang, S.-P., Su, Z.-G., Ma, G.-H., & Wang, P. (2011). Simultaneous production of 1, 3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle-supported multi-enzyme system with in situ cofactor regeneration. Bioresource Technology, 102, 1837–1843.

  270. Zhang, D., Chen, X., Chi, J., Feng, J., Wu, Q., & Zhu, D. (2015). Semi-rational engineering a carbonyl reductase for the enantioselective reduction of β-amino ketones. ACS Catalysis, 5, 150309095209002.

  271. Zhang, Y., Wang, Y., Wang, S., & Fang, B. (2017). Engineering bi-functional enzyme complex of formate dehydrogenase and leucine dehydrogenase by peptide linker mediated fusion for accelerating cofactor regeneration. Engineering in Life Sciences, 17, 989.

  272. Zhao, H., Chockalingam, K., & Chen, Z. (2002). Directed evolution of enzymes and pathways for industrial biocatalysis. Current Opinion in Biotechnology, 13, 104–110.

  273. Zhu, S., Gong, C., Song, D., Gao, S., & Zheng, G. (2012). Discovery of a Novel (+)- gamma -lactamase from Bradyrhizobium japonicum USDA 6 by rational genome mining. Applied and Environmental Microbiology, 78, 7492–7495.

If you have any questions on Intermediate Pharmaceutical Products. We will give the professional answers to your questions.